cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256281 Inverse Moebius transform of Pell numbers.

Original entry on oeis.org

1, 3, 6, 15, 30, 78, 170, 423, 991, 2410, 5742, 13950, 33462, 80954, 195060, 471255, 1136690, 2745273, 6625110, 15996850, 38614140, 93228102, 225058682, 543354078, 1311738151, 3166849426, 7645371036, 18457637018, 44560482150, 107578717860, 259717522850, 627014037303, 1513744660692, 3654504012630
Offset: 1

Views

Author

Paul D. Hanna, Jun 02 2015

Keywords

Comments

Here Pell(n) = A000129(n).

Examples

			G.f.: A(x) = x + 3*x^2 + 6*x^3 + 15*x^4 + 30*x^5 + 78*x^6 + 170*x^7 +...
where by definition
A(x) = x/(1-x) + 2*x^2/(1-x^2) + 5*x^3/(1-x^3) + 12*x^4/(1-x^4) + 29*x^5/(1-x^5) + 70*x^6/(1-x^6) + 169*x^7/(1-x^7) + 408*x^8/(1-x^8) + 985*x^9/(1-x^9) + 2378*x^10/(1-x^10) +...+ Pell(n)*x^n/(1-x^n) +...
The g.f. is also given by the series:
A(x) = x/(1-2*x-x^2) + x^2/(1-2*x^2-x^4) + x^3/(1-2*x^3-x^6) + x^4/(1-2*x^4-x^8) + x^5/(1-2*x^5-x^10) + x^6/(1-2*x^6-x^12) + x^7/(1-2*x^7-x^14) +...+ x^n/(1-x^n-x^(2*n)) +...
It is interesting to note that the ODD TERMS occur at A028982(n):
[1, 2, 4, 8, 9, 16, 18, 25, 32, 36, 49, 50, 64, 72, 81, 98, 100, ...];
i.e., those numbers k such that sum of divisors of k is odd.
		

Crossrefs

Cf. A256272, A000129 (Pell), A028982.

Programs

  • PARI
    Pell(n)=polcoeff(x/(1-2*x-x^2 +x*O(x^n)), n)
    a(n) = sumdiv(n,d, Pell(d))
    for(n=1, 40, print1(a(n), ", "))
    
  • PARI
    Pell(n)=polcoeff(x/(1-2*x-x^2 +x*O(x^n)), n)
    a(n) = polcoeff(sum(m=1, n, Pell(m)*x^m/(1-x^m +x*O(x^n))), n)
    for(n=1, 40, print1(a(n), ", "))
    
  • PARI
    a(n) = polcoeff(sum(m=1, n, x^m/(1-2*x^m-x^(2*m) +x*O(x^n)) ), n)
    for(n=1, 40, print1(a(n), ", "))
    
  • PARI
    a(n) = local(A=x+x^2); A=sum(m=1, n, x^m*sumdiv(m, d, (2 + x^d +x*O(x^n))^((m/d-1)))); polcoeff(A, n)
    for(n=1, 40, print1(a(n), ", "))

Formula

G.f.: Sum_{n>=1} Pell(n) * x^n / (1 - x^n).
G.f.: Sum_{n>=1} x^n / (1 - 2*x^n - x^(2*n)).
G.f.: Sum_{n>=1} x^n * Sum_{d|n} (2 + x^d)^(n/d-1).
Sum_{d|n} Moebius(n/d) * a(d) = Pell(n) for n>=1.
a(n) = Sum_{d|n} Pell(d).
a(A028982(n)) == 1 (mod 2), with a(n) == 0 (mod 2) otherwise, where A028982 lists the squares and twice squares.