A257905 Sequence (a(n)) generated by Rule 3 (in Comments) with a(1) = 0 and d(1) = 0.
0, 1, 3, 2, 5, 11, 4, 9, 6, 13, 7, 15, 10, 8, 17, 35, 12, 25, 14, 29, 16, 33, 18, 37, 19, 39, 20, 41, 21, 43, 22, 45, 23, 47, 30, 26, 53, 24, 49, 40, 28, 57, 27, 55, 31, 63, 32, 65, 38, 42, 34, 69, 36, 73, 48, 97, 44, 89, 46, 93, 51, 103, 52, 105, 50, 101
Offset: 1
Examples
a(1) = 0, d(1) = 0; a(2) = 1, d(2) = 1; a(3) = 3, d(3) = 2; a(4) = 2, d(4) = -1.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
import Data.List ((\\)) a257905 n = a257905_list !! (n-1) a257905_list = 0 : f [0] [0] where f xs@(x:_) ds = g [2 - x .. -1] where g [] = y : f (y:xs) (h:ds) where y = x + h (h:_) = [z | z <- [1..] \\ ds, x - z `notElem` xs] g (h:hs) | h `notElem` ds && y `notElem` xs = y : f (y:xs) (h:ds) | otherwise = g hs where y = x + h -- Reinhard Zumkeller, Jun 03 2015
-
Mathematica
{a, f} = {{0}, {0}}; Do[tmp = {#, # - Last[a]} &[Min[Complement[#, Intersection[a, #]]&[Last[a] + Complement[#, Intersection[f, #]] &[Range[2 - Last[a], -1]]]]]; If[! IntegerQ[tmp[[1]]], tmp = {Last[a] + #, #} &[NestWhile[# + 1 &, 1, ! (! MemberQ[f, #] && ! MemberQ[a, Last[a] - #]) &]]]; AppendTo[a, tmp[[1]]]; AppendTo[f, tmp[[2]]], {120}]; {a, f} (* Peter J. C. Moses, May 14 2015 *)
Formula
a(n) = A258046(n) - 1 for n >= 1.
Comments