cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256290 Numbers which have only digits 4 and 5 in base 10.

Original entry on oeis.org

4, 5, 44, 45, 54, 55, 444, 445, 454, 455, 544, 545, 554, 555, 4444, 4445, 4454, 4455, 4544, 4545, 4554, 4555, 5444, 5445, 5454, 5455, 5544, 5545, 5554, 5555, 44444, 44445, 44454, 44455, 44544, 44545, 44554, 44555, 45444, 45445, 45454, 45455, 45544
Offset: 1

Views

Author

M. F. Hasler, Mar 27 2015

Keywords

Crossrefs

Cf. A007088 (digits 0 & 1), A007931 (digits 1 & 2), A032810 (digits 2 & 3), A032834 (digits 3 & 4), A256291 (digits 5 & 6), A256292 (digits 6 & 7), A256340 (digits 7 & 8), A256341 (digits 8 & 9).

Programs

  • Magma
    [n: n in [1..60000] | Set(IntegerToSequence(n, 10)) subset {5, 4}];
    
  • Magma
    [n: n in [1..100000] | Set(Intseq(n)) subset {4,5}]; // Vincenzo Librandi, Aug 19 2016
    
  • Mathematica
    Flatten[Table[FromDigits[#,10]&/@Tuples[{4,5},n],{n,5}]]
  • PARI
    A256290(n)=vector(#n=binary(n+1)[2..-1],i,10^(#n-i))*n~+10^#n\9*4
    
  • Python
    def A256290(n): return int(bin(n+1)[3:])+(10**((n+1).bit_length()-1)-1<<2)//9 # Chai Wah Wu, Jul 15 2023

Formula

a(n) = A007931(n) + A002277(A000523(n+1)) = A032834(n) + A256077(n) etc.