A256311 Number T(n,k) of length 3n words such that all letters of the k-ary alphabet occur at least once and are introduced in ascending order and which can be built by repeatedly inserting triples of identical letters into the initially empty word; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 1, 3, 0, 1, 18, 12, 0, 1, 97, 198, 55, 0, 1, 530, 2520, 1820, 273, 0, 1, 2973, 29886, 42228, 15300, 1428, 0, 1, 17059, 347907, 859180, 564585, 122094, 7752, 0, 1, 99657, 4048966, 16482191, 17493938, 6577494, 942172, 43263
Offset: 0
Examples
T(0,0) = 1: (the empty word). T(1,1) = 1: aaa. T(2,1) = 1: aaaaaa. T(2,2) = 3: aaabbb, aabbba, abbbaa. T(3,1) = 1: aaaaaaaaa. T(3,2) = 18: aaaaaabbb, aaaaabbba, aaaabbbaa, aaabaaabb, aaabbaaab, aaabbbaaa, aaabbbbbb, aabaaabba, aabbaaaba, aabbbaaaa, aabbbabbb, aabbbbbba, abaaabbaa, abbaaabaa, abbbaaaaa, abbbaabbb, abbbabbba, abbbbbbaa. T(3,3) = 12: aaabbbccc, aaabbcccb, aaabcccbb, aabbbaccc, aabbbccca, aabbcccba, aabcccbba, abbbaaccc, abbbaccca, abbbcccaa, abbcccbaa, abcccbbaa. Triangle T(n,k) begins: 1; 0, 1; 0, 1, 3; 0, 1, 18, 12; 0, 1, 97, 198, 55; 0, 1, 530, 2520, 1820, 273; 0, 1, 2973, 29886, 42228, 15300, 1428; 0, 1, 17059, 347907, 859180, 564585, 122094, 7752;
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
A:= (n, k)-> `if`(n=0, 1, k/n *add(binomial(3*n, j) *(n-j) *(k-1)^j, j=0..n-1)): T:= (n, k)-> add((-1)^i*A(n, k-i)/(i!*(k-i)!), i=0..k): seq(seq(T(n, k), k=0..n), n=0..10);
Formula
T(n,k) = Sum_{i=0..k} (-1)^i * A213028(n,k-i) / (i!*(k-i)!).