cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256316 Number of partitions of 4n into exactly 5 parts.

Original entry on oeis.org

0, 0, 3, 13, 37, 84, 164, 291, 480, 748, 1115, 1602, 2233, 3034, 4033, 5260, 6747, 8529, 10642, 13125, 16019, 19366, 23212, 27604, 32591, 38225, 44559, 51649, 59553, 68331, 78045, 88759, 100540, 113456, 127578, 142979, 159733, 177918, 197613, 218899, 241860
Offset: 0

Views

Author

Colin Barker, Mar 23 2015

Keywords

Examples

			For n=2 the 3 partitions of 4*2 = 8 are [1,1,1,1,4], [1,1,1,2,3] and [1,1,2,2,2].
		

Crossrefs

Cf. A238340 (4 parts), A256317 (6 parts).

Programs

  • PARI
    concat(0, vector(40, n, k=0; forpart(p=4*n, k++, , [5,5]); k))
    
  • PARI
    concat([0,0], Vec(-x^2*(2*x^6+4*x^5+6*x^4+6*x^3+7*x^2+4*x+3)/((x-1)^5*(x^2+x+1)*(x^4+x^3+x^2+x+1)) + O(x^100)))

Formula

G.f.: -x^2*(2*x^6+4*x^5+6*x^4+6*x^3+7*x^2+4*x+3) / ((x-1)^5*(x^2+x+1)*(x^4+x^3+x^2+x+1)).
a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - 3*a(n-4) + 4*a(n-5) - 4*a(n-6) + 3*a(n-7) - 2*a(n-8) + 3*a(n-9) - 3*a(n-10) + a(n-11). - Wesley Ivan Hurt, Jun 26 2025