A256318 Decimal expansion of Sum_{k>=0} zeta(2k)/((2k+1)*4^(2k)) (negated).
4, 6, 4, 8, 4, 7, 6, 9, 9, 1, 7, 0, 8, 0, 5, 1, 0, 7, 4, 9, 2, 6, 9, 2, 4, 8, 6, 8, 3, 2, 9, 3, 9, 0, 6, 0, 8, 8, 2, 9, 4, 1, 1, 8, 7, 5, 7, 5, 9, 0, 1, 0, 8, 3, 7, 9, 1, 1, 7, 1, 5, 7, 1, 4, 8, 5, 0, 9, 6, 0, 4, 2, 3, 7, 2, 8, 6, 2, 5, 4, 0, 6, 2, 8, 0, 9, 2, 6, 5, 6, 0, 5, 2, 2, 3, 8, 7, 3, 0, 7, 9, 4, 4, 7, 3
Offset: 0
Examples
-0.464847699170805107492692486832939060882941187575901...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- H. M. Srivasata, M. L. Glasser, and Victor S. Adamchik, Some Definite Integrals Associated with the Riemann Zeta Function
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:=RealField(); Catalan(R)/Pi(R) + Log(2)/4; // G. C. Greubel, Aug 25 2018
-
Mathematica
RealDigits[-Catalan/Pi - Log[2]/4, 10, 105] // First
-
PARI
Catalan/Pi + log(2)/4 \\ Charles R Greathouse IV, Mar 23 2015
-
PARI
5 - sumpos(k=1,zeta(2*k)/(2*k+1)/16^k) \\ Charles R Greathouse IV, Mar 23 2015