cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256321 Number of partitions of 5n into exactly 3 parts.

Original entry on oeis.org

0, 2, 8, 19, 33, 52, 75, 102, 133, 169, 208, 252, 300, 352, 408, 469, 533, 602, 675, 752, 833, 919, 1008, 1102, 1200, 1302, 1408, 1519, 1633, 1752, 1875, 2002, 2133, 2269, 2408, 2552, 2700, 2852, 3008, 3169, 3333, 3502, 3675, 3852, 4033, 4219, 4408, 4602
Offset: 0

Views

Author

Colin Barker, Mar 24 2015

Keywords

Examples

			For n=1 the 2 partitions of 5*1 = 5 are [1, 1, 3] and [1, 2, 2].
		

Crossrefs

Cf. A033428 (6n), A256320 (4n), A256322 (7n).

Programs

  • Mathematica
    Length /@ (Total /@ IntegerPartitions[5 #, {3}] & /@ Range[0, 47]) (* Michael De Vlieger, Mar 24 2015 *)
    LinearRecurrence[{1,1,0,-1,-1,1},{0,2,8,19,33,52},50] (* Harvey P. Dale, Oct 29 2017 *)
  • PARI
    concat(0, vector(40, n, k=0; forpart(p=5*n, k++, , [3,3]); k))
    
  • PARI
    concat(0, Vec(-x*(x^2+2*x+2)*(2*x^2+2*x+1)/((x-1)^3*(x+1)*(x^2+x+1)) + O(x^100)))

Formula

a(n) = a(n-1)+a(n-2)-a(n-4)-a(n-5)+a(n-6) for n>5.
G.f.: -x*(x^2+2*x+2)*(2*x^2+2*x+1) / ((x-1)^3*(x+1)*(x^2+x+1)).