cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A256337 Number of R&E Family matchings on n edges.

Original entry on oeis.org

1, 3, 14, 84, 592, 4624, 38527, 334520, 2985938, 27183525, 251204717, 2349231434, 22186989871, 211295835831, 2026765351330, 19563183525857, 189878734136185, 1852021863338181, 18143610295356357, 178450501118284066, 1761425423533593329, 17443012946883397306, 173247241040324621443, 1725404763442479917997, 17226646104539624029186, 172389875494663129310211, 1728819399958251503320772, 17371923980126335814068340, 174882805619639894274925366, 1763573883561574064590764255, 17813088298000097109198747848, 180193867968101208748329431620, 1825392351254024651444300421782, 18516189068195200519689971895953, 188058513067187124022632768762920, 1912273561123769149363329826421051, 19466808894886697821847017471202077, 198381665775949932177580813656191187, 2023702201274806730119560173885757279, 20663697938590662344370538856632433182
Offset: 1

Views

Author

Aziza Jefferson, Mar 29 2015

Keywords

Comments

The R&E Family of matchings is the largest family of matchings formed by repeated edge pinnings, edge inflations by ladders and vertex insertions.

Examples

			a(6)=4624 because, of the 4659 matchings on 6 edges which can be drawn in the plane, 65 do not lie in the R&E Family. In canonical sequence form, two of these missing matchings are given by 123143546526 and 123145643625.
		

Crossrefs

Programs

  • Maple
    f := RootOf(2*x^(30)*_Z^(60) - 2*x^(29)*_Z^(59) - 38*x^(29)*_Z^(58) + 43*x^(28)*_Z^(57) + 342*x^(28)*_Z^(56) - 452*x^(27)*_Z^(55) - 1952*x^(27)*_Z^(54) + 3104*x^(26)*_Z^(53) + 8030*x^(26)*_Z^(52) - 15740*x^(25)*_Z^(51) - 25796*x^(25)*_Z^(50) + 63234*x^(24)*_Z^(49) + 68385*x^(24)*_Z^(48) - 210718*x^(23)*_Z^(47) - 154085*x^(23)*_Z^(46) + 600645*x^(22)*_Z^(45) + 295081*x^(22)*_Z^(44) - 1493939*x^(21)*_Z^(43) - (465768*x^(21)-30*x^(20))*_Z^(42) + 3281450*x^(20)*_Z^(41) + (556761*x^(20)-535*x^(19))*_Z^(40) - 6407159*x^(19)*_Z^(39) - (345063*x^(19)-4503*x^(18))*_Z^(38) + 11148795*x^(18)*_Z^(37) - (486467*x^(18)+23656*x^(17))*_Z^(36) - 17269156*x^(17)*_Z^(35) + (2247622*x^(17)+86500*x^(16))*_Z^(34) + 23701163*x^(16)*_Z^(33) - (5008690*x^(16)+232556*x^(15))*_Z^(32) - (28606954*x^(15)-2*x^(14))*_Z^(31) + (8286505*x^(15)+473426*x^(14))*_Z^(30) + (30112233*x^(14)-33*x^(13))*_Z^(29) - (10981985*x^(14)+739870*x^(13))*_Z^(28) - (27473085*x^(13)-241*x^(12))*_Z^(27) + (11935909*x^(13)+887762*x^(12))*_Z^(26) + (21720351*x^(12)-1046*x^(11))*_Z^(25) - (10798494*x^(12)+802751*x^(11))*_Z^(24) - (15014115*x^(11)-3036*x^(10))*_Z^(23) + (8290091*x^(11)+514052*x^(10))*_Z^(22) + (9236626*x^(10)-6259*x^(9))*_Z^(21) - (5538246*x^(10)+180970*x^(9))*_Z^(20) - (5149642*x^(9)-9471*x^(8))*_Z^(19) + (3290018*x^(9)-42243*x^(8))*_Z^(18) + (2610905*x^(8)-10692*x^(7))*_Z^(17) - (1741070*x^(8)-114094*x^(7))*_Z^(16) - (1180928*x^(7)-9042*x^(6))*_Z^(15) + (800928*x^(7)-91214*x^(6))*_Z^(14) + (460434*x^(6)-5687*x^(5))*_Z^(13) - (307889*x^(6)-46482*x^(5))*_Z^(12) - (148829*x^(5)-2607*x^(4))*_Z^(11) + (94979*x^(5)-16566*x^(4))*_Z^(10) + (38177*x^(4)-838*x^(3))*_Z^(9) - (22576*x^(4)-4140*x^(3))*_Z^(8) - (7344*x^(3)-176*x^(2))*_Z^(7) + (3919*x^(3)-695*x^(2))*_Z^(6) + (981*x^(2)-21*x)*_Z^(5) - (458*x^(2)-70*x)*_Z^(4) - (81*x-1)*_Z^(3) + (32*x-3)*_Z^(2) + 3*_Z - 1, 1);series(f, x=0, 40);

Formula

G.f. f satisfies 2*x^(30)*f^(60) - 2*x^(29)*f^(59) - 38*x^(29)*f^(58) + 43*x^(28)*f^(57) + 342*x^(28)*f^(56) - 452*x^(27)*f^(55) - 1952*x^(27)*f^(54) + 3104*x^(26)*f^(53) + 8030*x^(26)*f^(52) - 15740*x^(25)*f^(51) - 25796*x^(25)*f^(50) + 63234*x^(24)*f^(49) + 68385*x^(24)*f^(48) - 210718*x^(23)*f^(47) - 154085*x^(23)*f^(46) + 600645*x^(22)*f^(45) + 295081*x^(22)*f^(44) - 1493939*x^(21)*f^(43) - (465768*x^(21)-30*x^(20))*f^(42) + 3281450*x^(20)*f^(41) + (556761*x^(20)-535*x^(19))*f^(40) - 6407159*x^(19)*f^(39) - (345063*x^(19)-4503*x^(18))*f^(38) + 11148795*x^(18)*f^(37) - (486467*x^(18)+23656*x^(17))*f^(36) - 17269156*x^(17)*f^(35) + (2247622*x^(17)+86500*x^(16))*f^(34) + 23701163*x^(16)*f^(33) - (5008690*x^(16)+232556*x^(15))*f^(32) - (28606954*x^(15)-2*x^(14))*f^(31) + (8286505*x^(15)+473426*x^(14))*f^(30) + (30112233*x^(14)-33*x^(13))*f^(29) - (10981985*x^(14)+739870*x^(13))*f^(28) - (27473085*x^(13)-241*x^(12))*f^(27) + (11935909*x^(13)+887762*x^(12))*f^(26) + (21720351*x^(12)-1046*x^(11))*f^(25) - (10798494*x^(12)+802751*x^(11))*f^(24) - (15014115*x^(11)-3036*x^(10))*f^(23) + (8290091*x^(11)+514052*x^(10))*f^(22) + (9236626*x^(10)-6259*x^(9))*f^(21) - (5538246*x^(10)+180970*x^(9))*f^(20) - (5149642*x^(9)-9471*x^(8))*f^(19) + (3290018*x^(9)-42243*x^(8))*f^(18) + (2610905*x^(8)-10692*x^(7))*f^(17) - (1741070*x^(8)-114094*x^(7))*f^(16) - (1180928*x^(7)-9042*x^(6))*f^(15) + (800928*x^(7)-91214*x^(6))*f^(14) + (460434*x^(6)-5687*x^(5))*f^(13) - (307889*x^(6)-46482*x^(5))*f^(12) - (148829*x^(5)-2607*x^(4))*f^(11) + (94979*x^(5)-16566*x^(4))*f^(10) + (38177*x^(4)-838*x^(3))*f^(9) - (22576*x^(4)-4140*x^(3))*f^(8) - (7344*x^(3)-176*x^(2))*f^(7) + (3919*x^(3)-695*x^(2))*f^(6) + (981*x^(2)-21*x)*f^(5) - (458*x^(2)-70*x)*f^(4) - (81*x-1)*f^(3) + (32*x-3)*f^(2) + 3*f - 1 = 0.

A256338 Number of A&U Family matchings on n edges.

Original entry on oeis.org

1, 3, 14, 81, 526, 3655, 26522, 198322, 1516296, 11794717, 93028387, 742192059, 5978650560, 48558821234, 397218622275, 3269629207524, 27061726430000, 225078993453143, 1880240716499975, 15768890757767329, 132719696885282352, 1120664726059889642, 9490737694928103944, 80593740187789336604, 686097231181385302494, 5854230604182513256777, 50058728487687099021228, 428893610758038945556024, 3681458291424994103104272, 31654643493605098603330050, 272617697673293256259943417, 2351397730980411031399548438, 20310185543805378949877753778, 175663385844074502933143530174, 1521230708939544454165789841800, 13189400713003422051741601456307, 114483609078595784724427186310842, 994773380472692869438699360298740, 8652545469871591210786412806190538
Offset: 1

Views

Author

Aziza Jefferson, Mar 29 2015

Keywords

Comments

The A&U Family of matchings is the largest family of matchings formed by pinning edges to the right, edge inflation by ladders and vertex insertions.

Examples

			a(4)=81 because of the 105 matchings on 4 edges which can be drawn in the plane, 24 do not lie in the A&U Family. Of these 24, only three lie in the R&E family. In canonical sequence form the three missing matchings are given by 12134324, 12324314, and 12343142.
		

Crossrefs

Programs

  • Maple
    f := RootOf(2*x^7*_Z^(14)-2*x^6*_Z^(13)-3*x^6*_Z^(12)+7*x^5*_Z^(11)+3*x^5*_Z^(10)-16*x^4*_Z^9+2*x^4*_Z^8+18*x^3*_Z^7-7*x^2*_Z^5+(-12*x^3+2*x^2)*_Z^6+(4*x^2-5*x)*_Z^4+10*x*_Z^3+(-5*x+1)*_Z^2-2*_Z+1); convert(series(f, x=0, 40), radical);

Formula

G.f. f satisfies 2x^7f^14 - 2x^6f^13 - 3x^6f^12 + 7x^5f^11 + 3x^5f^10 - 16x^4f^9 + 2x^4f^8 + 18x^3f^7 - 7x^2f^5 + (-12x^3 + 2x^2)f^6 + (4x^2 - 5x)f^4 + 10xf^3 + (-5x+1)f^2 - 2f + 1 = 0.
Showing 1-2 of 2 results.