cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Aziza Jefferson

Aziza Jefferson's wiki page.

Aziza Jefferson has authored 9 sequences.

A256338 Number of A&U Family matchings on n edges.

Original entry on oeis.org

1, 3, 14, 81, 526, 3655, 26522, 198322, 1516296, 11794717, 93028387, 742192059, 5978650560, 48558821234, 397218622275, 3269629207524, 27061726430000, 225078993453143, 1880240716499975, 15768890757767329, 132719696885282352, 1120664726059889642, 9490737694928103944, 80593740187789336604, 686097231181385302494, 5854230604182513256777, 50058728487687099021228, 428893610758038945556024, 3681458291424994103104272, 31654643493605098603330050, 272617697673293256259943417, 2351397730980411031399548438, 20310185543805378949877753778, 175663385844074502933143530174, 1521230708939544454165789841800, 13189400713003422051741601456307, 114483609078595784724427186310842, 994773380472692869438699360298740, 8652545469871591210786412806190538
Offset: 1

Author

Aziza Jefferson, Mar 29 2015

Keywords

Comments

The A&U Family of matchings is the largest family of matchings formed by pinning edges to the right, edge inflation by ladders and vertex insertions.

Examples

			a(4)=81 because of the 105 matchings on 4 edges which can be drawn in the plane, 24 do not lie in the A&U Family. Of these 24, only three lie in the R&E family. In canonical sequence form the three missing matchings are given by 12134324, 12324314, and 12343142.
		

Crossrefs

Programs

  • Maple
    f := RootOf(2*x^7*_Z^(14)-2*x^6*_Z^(13)-3*x^6*_Z^(12)+7*x^5*_Z^(11)+3*x^5*_Z^(10)-16*x^4*_Z^9+2*x^4*_Z^8+18*x^3*_Z^7-7*x^2*_Z^5+(-12*x^3+2*x^2)*_Z^6+(4*x^2-5*x)*_Z^4+10*x*_Z^3+(-5*x+1)*_Z^2-2*_Z+1); convert(series(f, x=0, 40), radical);

Formula

G.f. f satisfies 2x^7f^14 - 2x^6f^13 - 3x^6f^12 + 7x^5f^11 + 3x^5f^10 - 16x^4f^9 + 2x^4f^8 + 18x^3f^7 - 7x^2f^5 + (-12x^3 + 2x^2)f^6 + (4x^2 - 5x)f^4 + 10xf^3 + (-5x+1)f^2 - 2f + 1 = 0.

A256337 Number of R&E Family matchings on n edges.

Original entry on oeis.org

1, 3, 14, 84, 592, 4624, 38527, 334520, 2985938, 27183525, 251204717, 2349231434, 22186989871, 211295835831, 2026765351330, 19563183525857, 189878734136185, 1852021863338181, 18143610295356357, 178450501118284066, 1761425423533593329, 17443012946883397306, 173247241040324621443, 1725404763442479917997, 17226646104539624029186, 172389875494663129310211, 1728819399958251503320772, 17371923980126335814068340, 174882805619639894274925366, 1763573883561574064590764255, 17813088298000097109198747848, 180193867968101208748329431620, 1825392351254024651444300421782, 18516189068195200519689971895953, 188058513067187124022632768762920, 1912273561123769149363329826421051, 19466808894886697821847017471202077, 198381665775949932177580813656191187, 2023702201274806730119560173885757279, 20663697938590662344370538856632433182
Offset: 1

Author

Aziza Jefferson, Mar 29 2015

Keywords

Comments

The R&E Family of matchings is the largest family of matchings formed by repeated edge pinnings, edge inflations by ladders and vertex insertions.

Examples

			a(6)=4624 because, of the 4659 matchings on 6 edges which can be drawn in the plane, 65 do not lie in the R&E Family. In canonical sequence form, two of these missing matchings are given by 123143546526 and 123145643625.
		

Crossrefs

Programs

  • Maple
    f := RootOf(2*x^(30)*_Z^(60) - 2*x^(29)*_Z^(59) - 38*x^(29)*_Z^(58) + 43*x^(28)*_Z^(57) + 342*x^(28)*_Z^(56) - 452*x^(27)*_Z^(55) - 1952*x^(27)*_Z^(54) + 3104*x^(26)*_Z^(53) + 8030*x^(26)*_Z^(52) - 15740*x^(25)*_Z^(51) - 25796*x^(25)*_Z^(50) + 63234*x^(24)*_Z^(49) + 68385*x^(24)*_Z^(48) - 210718*x^(23)*_Z^(47) - 154085*x^(23)*_Z^(46) + 600645*x^(22)*_Z^(45) + 295081*x^(22)*_Z^(44) - 1493939*x^(21)*_Z^(43) - (465768*x^(21)-30*x^(20))*_Z^(42) + 3281450*x^(20)*_Z^(41) + (556761*x^(20)-535*x^(19))*_Z^(40) - 6407159*x^(19)*_Z^(39) - (345063*x^(19)-4503*x^(18))*_Z^(38) + 11148795*x^(18)*_Z^(37) - (486467*x^(18)+23656*x^(17))*_Z^(36) - 17269156*x^(17)*_Z^(35) + (2247622*x^(17)+86500*x^(16))*_Z^(34) + 23701163*x^(16)*_Z^(33) - (5008690*x^(16)+232556*x^(15))*_Z^(32) - (28606954*x^(15)-2*x^(14))*_Z^(31) + (8286505*x^(15)+473426*x^(14))*_Z^(30) + (30112233*x^(14)-33*x^(13))*_Z^(29) - (10981985*x^(14)+739870*x^(13))*_Z^(28) - (27473085*x^(13)-241*x^(12))*_Z^(27) + (11935909*x^(13)+887762*x^(12))*_Z^(26) + (21720351*x^(12)-1046*x^(11))*_Z^(25) - (10798494*x^(12)+802751*x^(11))*_Z^(24) - (15014115*x^(11)-3036*x^(10))*_Z^(23) + (8290091*x^(11)+514052*x^(10))*_Z^(22) + (9236626*x^(10)-6259*x^(9))*_Z^(21) - (5538246*x^(10)+180970*x^(9))*_Z^(20) - (5149642*x^(9)-9471*x^(8))*_Z^(19) + (3290018*x^(9)-42243*x^(8))*_Z^(18) + (2610905*x^(8)-10692*x^(7))*_Z^(17) - (1741070*x^(8)-114094*x^(7))*_Z^(16) - (1180928*x^(7)-9042*x^(6))*_Z^(15) + (800928*x^(7)-91214*x^(6))*_Z^(14) + (460434*x^(6)-5687*x^(5))*_Z^(13) - (307889*x^(6)-46482*x^(5))*_Z^(12) - (148829*x^(5)-2607*x^(4))*_Z^(11) + (94979*x^(5)-16566*x^(4))*_Z^(10) + (38177*x^(4)-838*x^(3))*_Z^(9) - (22576*x^(4)-4140*x^(3))*_Z^(8) - (7344*x^(3)-176*x^(2))*_Z^(7) + (3919*x^(3)-695*x^(2))*_Z^(6) + (981*x^(2)-21*x)*_Z^(5) - (458*x^(2)-70*x)*_Z^(4) - (81*x-1)*_Z^(3) + (32*x-3)*_Z^(2) + 3*_Z - 1, 1);series(f, x=0, 40);

Formula

G.f. f satisfies 2*x^(30)*f^(60) - 2*x^(29)*f^(59) - 38*x^(29)*f^(58) + 43*x^(28)*f^(57) + 342*x^(28)*f^(56) - 452*x^(27)*f^(55) - 1952*x^(27)*f^(54) + 3104*x^(26)*f^(53) + 8030*x^(26)*f^(52) - 15740*x^(25)*f^(51) - 25796*x^(25)*f^(50) + 63234*x^(24)*f^(49) + 68385*x^(24)*f^(48) - 210718*x^(23)*f^(47) - 154085*x^(23)*f^(46) + 600645*x^(22)*f^(45) + 295081*x^(22)*f^(44) - 1493939*x^(21)*f^(43) - (465768*x^(21)-30*x^(20))*f^(42) + 3281450*x^(20)*f^(41) + (556761*x^(20)-535*x^(19))*f^(40) - 6407159*x^(19)*f^(39) - (345063*x^(19)-4503*x^(18))*f^(38) + 11148795*x^(18)*f^(37) - (486467*x^(18)+23656*x^(17))*f^(36) - 17269156*x^(17)*f^(35) + (2247622*x^(17)+86500*x^(16))*f^(34) + 23701163*x^(16)*f^(33) - (5008690*x^(16)+232556*x^(15))*f^(32) - (28606954*x^(15)-2*x^(14))*f^(31) + (8286505*x^(15)+473426*x^(14))*f^(30) + (30112233*x^(14)-33*x^(13))*f^(29) - (10981985*x^(14)+739870*x^(13))*f^(28) - (27473085*x^(13)-241*x^(12))*f^(27) + (11935909*x^(13)+887762*x^(12))*f^(26) + (21720351*x^(12)-1046*x^(11))*f^(25) - (10798494*x^(12)+802751*x^(11))*f^(24) - (15014115*x^(11)-3036*x^(10))*f^(23) + (8290091*x^(11)+514052*x^(10))*f^(22) + (9236626*x^(10)-6259*x^(9))*f^(21) - (5538246*x^(10)+180970*x^(9))*f^(20) - (5149642*x^(9)-9471*x^(8))*f^(19) + (3290018*x^(9)-42243*x^(8))*f^(18) + (2610905*x^(8)-10692*x^(7))*f^(17) - (1741070*x^(8)-114094*x^(7))*f^(16) - (1180928*x^(7)-9042*x^(6))*f^(15) + (800928*x^(7)-91214*x^(6))*f^(14) + (460434*x^(6)-5687*x^(5))*f^(13) - (307889*x^(6)-46482*x^(5))*f^(12) - (148829*x^(5)-2607*x^(4))*f^(11) + (94979*x^(5)-16566*x^(4))*f^(10) + (38177*x^(4)-838*x^(3))*f^(9) - (22576*x^(4)-4140*x^(3))*f^(8) - (7344*x^(3)-176*x^(2))*f^(7) + (3919*x^(3)-695*x^(2))*f^(6) + (981*x^(2)-21*x)*f^(5) - (458*x^(2)-70*x)*f^(4) - (81*x-1)*f^(3) + (32*x-3)*f^(2) + 3*f - 1 = 0.

A256336 Number of Largest Chain Ladder Family (LCLF) matchings on n edges.

Original entry on oeis.org

1, 3, 14, 81, 521, 3554, 25172, 183129, 1359863, 10264359, 78521474, 607449380, 4744167924, 37355679904, 296232263792, 2363773540473, 18965408058723, 152910824717297, 1238260516988018, 10066874219853977, 82134185988563049, 672294915226393926, 5519252917557226452
Offset: 1

Author

Aziza Jefferson, Mar 25 2015

Keywords

Comments

The Largest Chain Ladder Family (LCLF) of matchings is the largest family of matchings formed by repeated edge inflations by ladders and vertex insertions into a chain of any length.

Examples

			a(3)=14 because of the 15 matchings on 3 edges, only one does not lie in the Largest Chain Ladder Family. In canonical sequence form, the missing matching is given by 123123.
		

Programs

  • Maple
    f := RootOf(2*x^3*_Z^6-2*x^2*_Z^5+4*x^2*_Z^4-3*x*_Z^3+2*x*_Z^2+_Z-1,1);
    series(f, x=0, 30);

Formula

G.f. f satisfies 2x^3f^6-2x^2f^5+4x^2f^4-3xf^3+2xf^2+f-1=0.

A256335 Number of Largest Chain Family matchings on n edges.

Original entry on oeis.org

1, 3, 15, 93, 639, 4670, 35607, 280069, 2255979, 18516875, 154313881, 1302252294, 11106135906, 95571461319, 828803505465, 7235996887013, 63549647848195, 561049960940540, 4976419846070007, 44325237810194705, 396301576614077927, 3555397444230816343, 31996727212476905751, 288776859922595203094, 2613107152879937592054, 23702850369539462227046, 215483061767106353850246, 1963017891713523908516093, 17917224620763719834090179, 163830901587493323034301583, 1500542646711279198177939831, 13765184019931774406496702885
Offset: 1

Author

Aziza Jefferson, Mar 25 2015

Keywords

Comments

The Largest Chain Family of matchings is the largest family of matchings formed by repeated edge inflations and vertex insertions into any length n chain.

Examples

			a(4)=93 because of the 105 matchings on 4 edges, there are 13 matchings which do not lie in the Largest Chain Family. Two such matching in canonical sequence form, are given by 12343142 and 12342413.
		

Programs

  • Maple
    f := RootOf(_Z^6*x^3+_Z^5*x^2-4*_Z^4*x^2+2*_Z^3*x+_Z^2*x+4*_Z^2-11*_Z+7, 1);
    series(f, x=0, 30);

Formula

G.f. f satisfies x^3f^6+x^2f^5-4x^2f^4+2xf^3+(x+4)f^2-11f+7 = 0.

A256334 Number of C&C Family matchings on n edges.

Original entry on oeis.org

1, 1, 3, 12, 51, 227, 1052, 5030, 24634, 122950, 623140, 3198502, 16593124, 86864578, 458294970, 2434421685, 13008748377, 69882215729, 377172620330, 2044303447067, 11122504636031, 60723579401396, 332564474286299, 1826591420755058, 10058928726906713, 55528582177881182, 307224615377125853, 1703330011411361882, 9461963582991098963, 52655804456941167376, 293523046295844013225
Offset: 0

Author

Aziza Jefferson, Mar 25 2015

Keywords

Comments

The C&C Family of matchings is the family of matchings formed by first vertex insertions into the hairpin (except beneath both edges) or single edge (as long as the inserted edge does not have an outer edge connecting the first and last vertex), then edge inflations by ladders of the original single edge or hairpin.

Examples

			a(3)=12 because of the 15 matchings on 3 edges, three do not lie in the C&C Family. In canonical sequence form the missing matchings are given by 121323, 123123, and 123312.
		

Programs

  • Maple
    f := RootOf(x^2*_Z^3 + x*(1-x)^2*_Z^2 - (1-x)^2*_Z + (1-x)^2);
    series(f, x=0, 30);
  • Mathematica
    f[x_] = Root[x^2 #^3 + x(1-x)^2 #^2 - (1-x)^2 # + (1-x)^2&, 1];
    CoefficientList[f[x] + O[x]^31, x] (* Jean-François Alcover, Oct 06 2019 *)

Formula

G.f. f satisfies f = 1 + x*f^2 + (x^2*f^3)/(1-x)^2.

Extensions

a(0)=1 prepended by Alois P. Heinz, Jul 14 2017

A256333 Number of R&G Family matchings on n edges.

Original entry on oeis.org

1, 3, 13, 61, 301, 1552, 8277, 45284, 252753, 1433633, 8239993, 47887467, 280927846, 1661387046, 9894376821, 59288650788, 357198545904, 2162437157263, 13147835385477, 80251977589719, 491573099486143, 3020738578507674, 18617035563669489, 115046892012376542, 712710925868858139, 4425312432316379040, 27535525144298975942, 171670784266383750322, 1072246008621559982926, 6708644077265798380125
Offset: 1

Author

Aziza Jefferson, Mar 25 2015

Keywords

Comments

The R&G Family of matchings is the family of matchings formed by first vertex insertions into the hairpin or single edge (as long as the inserted edge does not have an outer edge connecting the first and last vertex), then edge inflations by ladders of the original single edge or hairpin.

Examples

			a(3)=13 because of the 15 matchings on 3 edges, two do not lie in the R&G Family. In canonical sequence form the missing matchings are given by 121323 and 123123. a(4)= 61 out of the 105 matchings on 4 edges, one such matching which does not lie in the R&G Family is given by 12234314.
		

Programs

  • Maple
    f := RootOf(x^2*_Z^4 + x*(1-x)*(_Z-x*_Z)*_Z - (1-x)^2*_Z + (1-x)^2);
    series(f, x=0, 30);

Formula

G.f. f satisfies x^2f^4 + x(1-x)^2f^2 - (1-x)^2f + (1-x)^2.

A256332 Number of D&P Family matchings on n edges.

Original entry on oeis.org

1, 3, 13, 65, 351, 1994, 11747, 71117, 439765, 2765775, 17636697, 113766694, 741032618, 4867177299, 32199559769, 214369107989, 1435126789097, 9655274425496, 65246685081291, 442668997422749, 3014127038713923, 20590331364902095, 141078438156193677, 969270926188235574, 6676082724399618966, 46089922748156948822, 318876966533117953114, 2210580887889464667057, 15353093117180070481879, 106816339860746421126519
Offset: 1

Author

Aziza Jefferson, Mar 25 2015

Keywords

Examples

			a(3)=13 because of the 15 matchings on 3 edges, two do not lie in the D&P Family. In canonical sequence form, the missing matchings are given by 121323 and 123123.
		

Programs

  • Maple
    f := RootOf(x^3*_Z^6-x^2*_Z^5+2*x*_Z^3-x*_Z^2-_Z+1);
    series(f, x=0, 30);

Formula

G.f. f satisfies x^3f^6-x^2f^5+2xf^3-xf^2-f+1=0.

A256331 Number of Largest Hairpin Family matchings on n edges.

Original entry on oeis.org

1, 3, 14, 81, 527, 3684, 27022, 205149, 1598303, 12705939, 102653652, 840419676, 6956988612, 58132229976, 489673597926, 4153635860373, 35449185841679, 304179698619129, 2622657870000646, 22710277017073785, 197418128701387895
Offset: 1

Author

Aziza Jefferson, Mar 25 2015

Keywords

Comments

The Largest Hairpin Family of matchings is the largest family of matchings formed by repeated edge inflations and vertex insertions into the single edge and the hairpin.

Examples

			a(3) = 14 because of the 15 matchings on 3 edges, only 1 does not lie in the Largest Hairpin Family. In canonical sequence form, the missing matching is given by 121323.
		

Programs

  • Maple
    f := RootOf(_Z^3*x-2*_Z^2*x-2*_Z^2+5*_Z-3, 1);
    series(f, x=0, 30);

Formula

G.f. f satisfies x*f^3 - (2*x+2)*f^2 + 5*f - 3 = 0.

A256330 Number of H&S Family matchings on n edges.

Original entry on oeis.org

1, 3, 14, 84, 592, 4659, 39699, 359004, 3399164, 33378417, 337584612, 3498553682, 37006524557, 398312230440, 4351822041763, 48169486233388, 539303075161814, 6099303431601708, 69604032964928589, 800737747350839332, 9279033826462097649, 108236883894562489628
Offset: 1

Author

Aziza Jefferson, Mar 25 2015

Keywords

Comments

The H&S Family of matchings is the family of matchings that can be drawn in the plane without crossings.
Jay Pantone has computed the first 1500 terms and has a conjectured g.f. - N. J. A. Sloane, Oct 06 2016
Consider the graph whose vertices are the arcs of a matching, where two vertices are connected if the corresponding arcs cannot be drawn on the same side without crossing. Matchings, where the graph obtained this way is connected, are in bijection with 3-edge-connected rooted cubic maps with 2n nodes and a distinguished Hamiltonian cycle (cf. A000264). - Ludovic Schwob, Jun 17 2025

Examples

			a(5)= 592; in canonical sequence form the two 3-noncrossing matchings it does not include are 1231435425 and 1234254153.
		

Crossrefs

Cf. A000264.