A256345 Moduli n for which A248218(n) = 5 (length of the terminating cycle of 0 under x -> x^2+1 modulo n).
83, 151, 167, 223, 249, 257, 283, 359, 373, 453, 501, 563, 581, 607, 669, 677, 771, 821, 849, 953, 1057, 1077, 1119, 1169, 1321, 1561, 1577, 1689, 1743, 1799, 1821, 1981, 1987, 2017, 2031, 2463, 2513, 2573, 2611, 2833, 2859, 2869
Offset: 1
Keywords
Examples
See A256342 or A256349.
Links
- Robert Israel, Table of n, a(n) for n = 1..5000
Programs
-
Maple
filter:= proc(n) local x, k, R,p; x:= 0; R[0]:= 0; for k from 1 do x:= x^2+1 mod n; if assigned(R[x]) then return evalb(k-R[x] = 5) else R[x]:= k fi od; end proc: select(filter, [$1..3000]); # Robert Israel, Mar 09 2021
-
PARI
for(i=1,2900,A248218(i)==5&&print1(i","))
Comments