cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256391 a(n) = number of tuples (a,b,c,d) of natural numbers a,b,c,d <= n with gcd(a,b)=gcd(b,c)=gcd(c,d)=gcd(d,a)=1.

Original entry on oeis.org

1, 7, 35, 79, 243, 319, 787, 1155, 1859, 2295, 4267, 4891, 8295, 9743, 11851, 14539, 22191, 24359, 35427, 39387, 45915, 51687, 71171, 76407, 94911, 105047, 123251, 134447, 174003, 180835, 229783, 253007, 281447, 305111, 343315, 360215, 442547, 476115, 523111, 552307
Offset: 1

Views

Author

Juan Arias-de-Reyna, Mar 27 2015

Keywords

Comments

The sequence has the asymptotics a(n) = rho*n^4 + O(n^3*log^2(n)) where rho=prod_p(1 - 4/p^2 + 4/p^3 - 1/p^4) = 0.21777871661953... (product extended to primes). See A256392.

Examples

			For n=2, a(2)=7 counting the tuples (1,1,1,1), (2,1,1,1), (1,2,1,1), (1,1,2,1), (1,1,1,2), (2,1,2,1), (1,2,1,2).
		

Crossrefs

Cf. A256390.

Programs

  • Mathematica
    A[M_] := A[M] = Module[{X, a1, a2, a3, a4, K, count, k},
        X = Flatten[
          Table[{a1, a2, a3, a4}, {a1, 1, M}, {a2, 1, M}, {a3, 1, M}, {a4,
             1, M}], 3];
        K = Length[X];
        count = 0;
        For[k = 1, k <= K, k++,
         {a1, a2, a3, a4} = X[[k]];
         If[(GCD[a1, a2] == 1) && (GCD[a2, a3] == 1) && (GCD[a3, a4] ==
             1) && (GCD[a4, a1] == 1), count = count + 1]];
        count];
    Table[A[n], {n, 1, 20}]

Formula

a(n) = sum_a sum_b sum_c sum_d mu(a) mu(b) mu(c) mu(d) [n/gcd(a,b)][n/gcd(b,c)][n/gcd(c,d)][n/gcd(d,a)], where mu is Moebius function, a,b,c,d run through natural numbers.