A256398 Palindromes of the form i^2 + reverse(i)^2.
0, 2, 8, 101, 242, 404, 585, 909, 10001, 12221, 14841, 20402, 24642, 40004, 44244, 48884, 50805, 90009, 96269, 1000001, 1030301, 1080801, 1210121, 1244421, 1298921, 1440441, 1478741, 1690961, 2004002, 2234322, 2468642, 2484842, 4000004, 4050504, 4410144
Offset: 1
Examples
Palindrome 585 is in the sequence because 585 = 12^2 + 21^2. The smallest term that can be obtained in more than one way is 125484521 = 11020^2 + 2011^2 = 11200^2 + 211^2. Are there any terms that can be obtained in more than two ways? - _Jon E. Schoenfield_, Mar 30 2015
Links
- Bui Quang Tuan, Table of n, a(n) for n = 1..458
Programs
-
Mathematica
Sort@ DeleteDuplicates@ Select[Table[n^2 + FromDigits[Reverse[IntegerDigits@ n]]^2, {n, 10000}], Reverse@ IntegerDigits@ # == IntegerDigits@ # &] (* Michael De Vlieger, Mar 28 2015 *)
-
PARI
rev(n)=r="";d=digits(n);for(i=1,#d,r=concat(Str(d[i]),r));eval(r) v=[];for(n=0,10^4,if(rev(P=(n^2+rev(n)^2))==P,v=concat(v,P)));vecsort(v,,8) \\ Derek Orr, Mar 29 2015
Extensions
Data corrected by Derek Orr, Mar 29 2015
Comments