cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256398 Palindromes of the form i^2 + reverse(i)^2.

Original entry on oeis.org

0, 2, 8, 101, 242, 404, 585, 909, 10001, 12221, 14841, 20402, 24642, 40004, 44244, 48884, 50805, 90009, 96269, 1000001, 1030301, 1080801, 1210121, 1244421, 1298921, 1440441, 1478741, 1690961, 2004002, 2234322, 2468642, 2484842, 4000004, 4050504, 4410144
Offset: 1

Views

Author

Bui Quang Tuan, Mar 28 2015

Keywords

Comments

Is 864666666468 the only term in this sequence that has an even number of digits? - Jon E. Schoenfield, Mar 30 2015
The next terms with an even number of digits are 5807785995877085, 56359464311346495365, and 943614966934439669416349, which are obtained for i = 37939066, 3553782166, 529145826418 (and their reverses). - Giovanni Resta, Aug 22 2025

Examples

			Palindrome 585 is in the sequence because 585 = 12^2 + 21^2.
The smallest term that can be obtained in more than one way is 125484521 = 11020^2 + 2011^2 = 11200^2 + 211^2. Are there any terms that can be obtained in more than two ways? - _Jon E. Schoenfield_, Mar 30 2015
		

Crossrefs

Cf. A002113 (palindromes), A056964 (n+rev(n)).
Cf. A256437.

Programs

  • Mathematica
    Sort@ DeleteDuplicates@ Select[Table[n^2 + FromDigits[Reverse[IntegerDigits@ n]]^2, {n, 10000}], Reverse@ IntegerDigits@ # == IntegerDigits@ # &] (* Michael De Vlieger, Mar 28 2015 *)
  • PARI
    rev(n)=r="";d=digits(n);for(i=1,#d,r=concat(Str(d[i]),r));eval(r)
    v=[];for(n=0,10^4,if(rev(P=(n^2+rev(n)^2))==P,v=concat(v,P)));vecsort(v,,8) \\ Derek Orr, Mar 29 2015

Extensions

Data corrected by Derek Orr, Mar 29 2015