cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256447 Number of integers in range (prime(n)^2)+1 .. (prime(n)*prime(n+1)) whose smallest prime factor is at least prime(n): a(n) = A250477(n) - A250474(n).

Original entry on oeis.org

2, 3, 3, 7, 5, 9, 6, 13, 23, 9, 28, 22, 12, 24, 39, 37, 17, 44, 32, 16, 53, 37, 53, 76, 46, 23, 43, 20, 49, 161, 48, 82, 23, 142, 27, 91, 90, 66, 103, 97, 41, 181, 41, 74, 39, 228, 228, 86, 45, 86, 130, 44, 217, 134, 141, 138, 46, 148, 106, 47, 261, 355, 116, 53, 109, 387, 166, 284, 65, 119, 181, 243, 198, 195, 122, 190, 268, 125, 265, 330, 78
Offset: 1

Views

Author

Antti Karttunen, Mar 29 2015

Keywords

Comments

a(n) = number of integers in range [(prime(n)^2)+1, (prime(n) * prime(n+1))] whose smallest prime factor is at least prime(n).
All the terms are strictly positive, because at least for the last number in the range we have A020639(prime(n)*prime(n+1)) = prime(n).
See the conjectures in A256448.

Examples

			For n=1, we have in range [(prime(1)^2)+1, (prime(1) * prime(2))], that is, in range [5,6], two numbers, 5 and 6, whose smallest prime factor (A020639) is at least 2, thus a(1) = 2.
For n=2, we have in range [10, 15] three numbers, {11, 13, 15}, whose smallest prime factor is at least 3, thus a(2) = 3.
For n=3, we have in range [26, 35] three numbers, {29, 31, 35}, whose smallest prime factor is at least prime(3) = 5, thus a(3) = 3.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Count[Range[Prime[n]^2 + 1, Prime[n] Prime[n + 1]],
      x_ /; Min[First /@ FactorInteger[x]] >=
    Prime@n]; Array[f, 81] (* Michael De Vlieger, Mar 30 2015 *)
  • Scheme
    (define (A256447 n) (- (A250477 n) (A250474 n)))

Formula

a(n) = A250477(n) - A250474(n).
a(n) = A251723(n) - A256448(n).
a(n) = A256448(n) + A256449(n).
a(n) = A256468(n) + 1.
Other identities. For all n >= 1:
a(n+1) = A256446(n) - A256448(n).