A256497 Triangle read by rows, sums of 2 distinct nonzero cubes: T(n,k) = (n+1)^3+k^3, 1 <= k <= n.
9, 28, 35, 65, 72, 91, 126, 133, 152, 189, 217, 224, 243, 280, 341, 344, 351, 370, 407, 468, 559, 513, 520, 539, 576, 637, 728, 855, 730, 737, 756, 793, 854, 945, 1072, 1241, 1001, 1008, 1027, 1064, 1125, 1216, 1343, 1512, 1729
Offset: 1
Examples
Triangle starts: n\k 1 2 3 4 5 6 7 8 9 10 ... 1: 9 2: 28 35 3: 65 72 91 4: 126 133 152 189 5: 217 224 243 280 341 6: 344 351 370 407 468 559 7: 513 520 539 576 637 728 855 8: 730 737 756 793 854 945 1072 1241 9: 1001 1008 1027 1064 1125 1216 1343 1512 1729 10: 1332 1339 1358 1395 1456 1547 1674 1843 2060 2331 ... The successive terms are (2^3+1^3), (3^3+1^3), (3^3+2^3), (4^3+1^3), (4^3+2^3), (4^3+3^3), ...
Formula
T(n,k) = (n+1)^3+k^3.
T(n,k) = (2k+1)(k^2+k+1) + Sum_{j=k+1..n} A003215(j), n>=k+1. For example, T(8,4) = 9*21 + 91 + 127 + 169 + 217 = 793.
Comments