A256503 Smallest k>=1 such that n^2 + (n+1)^2 + ... + (n+k)^2 is prime or a(n)=0 if there is no such k.
1, 1, 5, 1, 1, 2, 1, 0, 1, 0, 0, 1, 5, 1, 0, 0, 1, 5, 1, 0, 5, 1, 5, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 5, 1, 0, 0, 1, 0, 0, 0, 0, 1, 5, 0, 1, 5, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 2, 5, 0, 1, 2, 0, 0, 1, 1, 0, 1, 0, 0, 0, 2, 0, 0, 1, 0, 5, 1, 0, 1, 1, 2, 1
Offset: 1
Keywords
Formula
1) if 2n^2+2n+1 is prime, then a(n)=1;
2) if 2n^2+2n+1 is not prime, but 3n^2+6n+5 is prime, then a(n)=2;
3) if 2n^2+2n+1 and 3n^2+6n+5 are both composite numbers, but 6n^2+30n+55 is prime, then a(n)=5;
4) otherwise, a(n)=0.
Extensions
More terms from Peter J. C. Moses, Mar 31 2015
Comments