A256507 Triangle read by rows, giving in triangle A256946 the positions of n-th's row terms in row n+1.
1, 4, 7, 1, 2, 5, 7, 8, 11, 12, 14, 1, 2, 3, 6, 7, 9, 11, 12, 13, 16, 17, 19, 20, 22, 23, 1, 2, 3, 4, 7, 8, 10, 11, 13, 14, 16, 17, 18, 19, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 16, 17, 19, 20, 22, 23, 24, 25, 26, 29
Offset: 1
Examples
. n | T(n,*) | A256946(n,*) . ---+--------------------+-------------------------------------- . 1 | 1,4,7 | [1, 2, 3] . 2 | 1,2,5,7,8,11,12,14 | [1,4, 5, 2,6, 7,3, 8] . 3 | 1,2,3,6,7,9,11,... | [1,4,9,10,5,11,2,6,12,13,7,3,14,8,15] .
Links
- Reinhard Zumkeller, Rows n = 1..30 of triangle, flattened
Programs
-
Haskell
import Data.List (elemIndex); import Data.Maybe (fromJust) a256507 n k = a256507_tabf !! (n-1) !! (k-1) a256507_row n = a256507_tabf !! (n-1) a256507_tabf = zipWith (\us vs -> map ((+ 1) . fromJust . (`elemIndex` vs)) us) a256946_tabf $ tail a256946_tabf
-
Mathematica
row[n_] := (* row of A256946 *) row[n] = SortBy[Range[n(n+2)], If[IntegerQ[ Sqrt[#]], 0, N[FractionalPart[Sqrt[#]]]]&]; T[n_, k_] := FirstPosition[row[n+1], row[n][[k]]][[1]]; Table[T[n, k], {n, 1, 5}, {k, 1, n(n+2)}] // Flatten (* Jean-François Alcover, Sep 17 2019 *)
Comments