A256519 Composites c for which an integer 1 < k < c exists such that (c-k)! == -1 (mod c).
25, 121, 169, 437, 551, 667, 721, 1037, 1159, 1273, 1349, 1403, 1541, 1769, 1943, 2209, 2329, 2363, 2419, 3071, 3713, 4087, 5041, 5111, 7313, 8357, 8479, 9017, 11357, 11983, 12673, 16117, 16343, 19043, 19099, 19879
Offset: 1
Keywords
Examples
c = 25 satisfies the congruence with k = 21, since ((25-21)!+1) mod 25 = 0, so 25 is a term of the sequence.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..719
Programs
-
PARI
forcomposite(c=1, , for(k=1, c-1, if(Mod((c-k)!, c)==-1, print1(c, ", "); break({1}))))
-
PARI
is(n)=if(isprime(n), return(0)); my(m=Mod(6,n)); for(k=4,n,m*=k; if(m==-1, return(1));if(gcd(m,n)!=1,return(0))) \\ Charles R Greathouse IV, Apr 02 2015
Extensions
a(25)-a(36) from Charles R Greathouse IV, Apr 02 2015
Comments