A256535 The largest number of T-tetrominoes that fit within an n X n square.
0, 0, 1, 4, 5, 8, 11, 16, 19, 24, 29, 36, 41, 48, 55, 64, 71, 80, 89, 100, 109, 120, 131, 144, 155, 168, 181, 196, 209, 224, 239, 256, 271, 288, 305, 324, 341, 360, 379, 400, 419, 440, 461, 484, 505, 528, 551, 576, 599, 624, 649, 676, 701, 728, 755, 784, 811
Offset: 1
Examples
The optimal tiling for a 4 X 4 square is: AAAB DABB DDCB DCCC This forms the building block of a solution for all n a multiple of four. For n=7 a solution is given by: ABBBCCC AABD/CE A/DDDEE F/E FFG FGG //G with 5 empty squares, and the 4 X 4 square in the lower left filled in as above. For n=6, a tiling of the excess after removing a 4 X 4 square shows us how optimal solutions can be generated for any even number that is not a multiple of 4: //ABBB /AAABC CC DC DD D/ The pairs A&B and C&D can be extended in the manner of a frieze. A nice solution for 9 X 9 does not include tilings of smaller even squares: ABBBCDDDE AABFCCDEE AGFFCHHHE GGGFI/HJ/ KKKIIIJJJ /KL//MNNN OLLLPMMNQ OORPPMSQQ ORRRPSSSQ
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Jack W Grahl, Every square can be tiled with T-tetrominos and no more than 5 monominos, arXiv:1807.09201 [math.CO], 2018.
- Robert Hochberg, The gap number of the T-tetromino arxiv:1403.6730, [math.CO], June 2014.
- Shuxin Zhan, Tiling a deficient rectangle with t-tetrominoes, Penn State Mathematics Advanced Study Semesters REU, August 2012.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,1,-2,1).
Programs
-
Mathematica
Delete[Flatten[ Table[{4n^2, 4n^2 + 2n - 1, 4n^2 + 4n, 4n^2 + 6n + 1}, {n, 0, 14}]], 2] (* or *) CoefficientList[ Series[1 + (x^4 - 2x^3 - 2x + 1)/((x - 1)^3 (x^3 + x^2 + x + 1)), {x, 0, 58}], x] (* Robert G. Wilson v, Jul 25 2018 *) LinearRecurrence[{2,-1,0,1,-2,1},{0,0,1,4,5,8,11},60] (* Harvey P. Dale, Aug 11 2024 *)
-
PARI
concat([0,0], Vec(x^3*(1 + 2*x - 2*x^2 + 2*x^3 - x^4) / ((1 - x)^3*(1 + x)*(1 + x^2)) + O(x^60))) \\ Colin Barker, May 24 2019
Formula
From Jack W Grahl, Jul 25 2018: (Start)
a(4m) = 4m^2;
a(4m+1) = 4m^2 + 2m - 1;
a(4m+2) = 4m^2 + 4m;
a(4m+3) = 4m^2 + 6m + 1.
(End)
From Colin Barker, May 24 2019: (Start)
G.f.: x^3*(1 + 2*x - 2*x^2 + 2*x^3 - x^4) / ((1 - x)^3*(1 + x)*(1 + x^2)).
a(n) = (-7 + 3*(-1)^n + 2*(-i)^n + 2*i^n + 2*n^2) / 8 for n>1, where i=sqrt(-1).
a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6) for n>7.
(End)
Comments