A256540 Number of partitions of 4n into at most 6 parts.
1, 5, 20, 58, 136, 282, 532, 931, 1540, 2432, 3692, 5427, 7760, 10829, 14800, 19858, 26207, 34085, 43752, 55491, 69624, 86499, 106491, 130019, 157532, 189509, 226479, 269005, 317683, 373165, 436140, 507334, 587535, 677571, 778311, 890691, 1015691, 1154336
Offset: 0
Examples
For n=1 the 5 partitions of 1*4 = 4 are [4], [1,3], [2,2], [1,1,2] and [1,1,1,1].
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,3,-6,7,-6,6,-6,7,-6,3,-3,3,-1).
Programs
-
PARI
concat(1, vector(40, n, k=0; forpart(p=4*n, k++, , [1,6]); k))
-
PARI
Vec((3*x^8+5*x^7+11*x^6+11*x^5+13*x^4+10*x^3+8*x^2+2*x+1) / ((x-1)^6*(x^2+x+1)^2*(x^4+x^3+x^2+x+1)) + O(x^100))
Formula
G.f.: (3*x^8+5*x^7+11*x^6+11*x^5+13*x^4+10*x^3+8*x^2+2*x+1) / ((x-1)^6*(x^2+x+1)^2*(x^4+x^3+x^2+x+1)).
a(n) = A001402(4n). - Alois P. Heinz, Apr 01 2015