A256547 Smallest k>=1 such that n^4 + (n+1)^4 + ... + (n+k)^4 is prime or a(n)=0 if there is no such k.
1, 1, 1, 1, 5, 1, 4, 1, 1, 2, 0, 1, 1, 1, 29, 1, 0, 0, 29, 2, 29, 0, 29, 29, 1, 1, 1, 2, 0, 2, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 29, 1, 0, 5, 0, 9, 1, 0, 0, 0, 2, 0, 1, 0, 29, 0, 2, 0, 0, 0, 14, 1, 0, 9, 0, 1, 1, 0, 0, 29, 1, 0, 1, 0, 0, 0, 1, 0, 14, 0, 1, 9, 2
Offset: 1
Keywords
Links
- Peter J. C. Moses, Table of n, a(n) for n = 1..1000
Formula
1) If P_1(n) is prime, then a(n)=1;
2) if P_1(n) is composite, but P_2(n) is prime, then a(n)=2;
3) if P_1(n) and P_2(n) are composite, but P_3(n) is prime, then a(n)=4;
4) if P_1(n), P_2(n), and P_3(n) are composite, but P_4(n) is prime, then a(n)=5;
5) if P_1(n), P_2(n), P_3(n), and P_4(n) are composite, but P_5(n) is prime, then a(n)=9;
6) if P_1(n), P_2(n), P_3(n), P_4(n), and P_5(n) are composite, but P_6(n) is prime, then a(n)=14;
7) if P_1(n), P_2(n), P_3(n), P_4(n), P_5(n), and P_6(n) are composite, but P_7(n) is prime, then a(n)=29;
8) otherwise a(n)=0.
Here P_i(n), i=1,...,7, are defined in comment in A256546.
Comments