A256550 Triangle read by rows, T(n,k) = EL(n,k)/(n-k+1)! and EL(n,k) the matrix-exponential of the unsigned Lah numbers scaled by exp(-1), for n>=0 and 0<=k<=n.
1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 5, 12, 6, 1, 0, 15, 50, 40, 10, 1, 0, 52, 225, 250, 100, 15, 1, 0, 203, 1092, 1575, 875, 210, 21, 1, 0, 877, 5684, 10192, 7350, 2450, 392, 28, 1, 0, 4140, 31572, 68208, 61152, 26460, 5880, 672, 36, 1
Offset: 0
Examples
Triangle starts: 1; 0, 1; 0, 1, 1; 0, 2, 3, 1; 0, 5, 12, 6, 1; 0, 15, 50, 40, 10, 1; 0, 52, 225, 250, 100, 15, 1; 0, 203, 1092, 1575, 875, 210, 21, 1;
Programs
-
Sage
def T(dim) : M = matrix(ZZ, dim) for n in range(dim) : M[n, n] = 1 for k in range(n) : M[n,k] = (k*n*gamma(n)^2)/(gamma(k+1)^2*gamma(n-k+1)) E = M.exp()/exp(1) for n in range(dim) : for k in range(n) : M[n,k] = E[n,k]/factorial(n-k+1) return M T(8) # Computes the sequence as a lower triangular matrix.