A256554 Number T(n,k) of cycle types of degree-n permutations having the k-th smallest possible order; triangle T(n,k), n>=0, 1<=k<=A009490(n), read by rows.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 1, 1, 1, 4, 2, 4, 1, 5, 1, 1, 1, 1, 1, 1, 4, 3, 4, 1, 7, 1, 1, 1, 2, 2, 1, 1, 1, 1, 5, 3, 6, 2, 9, 1, 2, 1, 3, 4, 1, 1, 1, 1, 1, 1, 5, 3, 6, 2, 12, 1, 2, 1, 4, 1, 6, 2, 2, 1, 2, 1, 1, 1, 2
Offset: 0
Examples
Triangle T(n,k) begins: 1; 1; 1, 1; 1, 1, 1; 1, 2, 1, 1; 1, 2, 1, 1, 1, 1; 1, 3, 2, 2, 1, 2; 1, 3, 2, 2, 1, 3, 1, 1, 1; 1, 4, 2, 4, 1, 5, 1, 1, 1, 1, 1; 1, 4, 3, 4, 1, 7, 1, 1, 1, 2, 2, 1, 1, 1; 1, 5, 3, 6, 2, 9, 1, 2, 1, 3, 4, 1, 1, 1, 1, 1;
Links
- Alois P. Heinz, Rows n = 0..60, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i=1, x, b(n, i-1)+(p-> add(coeff(p, x, t)*x^ilcm(t, i), t=1..degree(p)))(add(b(n-i*j, i-1), j=1..n/i))) end: T:= n->(p->seq((h->`if`(h=0, [][], h))(coeff(p, x, i)) , i=1..degree(p)))(b(n$2)): seq(T(n), n=0..12);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, x, b[n, i - 1] + Function[p, Sum[Coefficient[p, x, t]*x^LCM[t, i], {t, 1, Exponent[p, x]}]][Sum[b[n - i*j, i - 1], {j, 1, n/i}]]]; T[n_] := Function[p, Table[Function[h, If[h == 0, {{}, {}}, h]][Coefficient[p, x, i]], {i, 1, Exponent[p, x]}]][b[n, n]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 23 2017, translated from Maple *)
Comments