cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256554 Number T(n,k) of cycle types of degree-n permutations having the k-th smallest possible order; triangle T(n,k), n>=0, 1<=k<=A009490(n), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 1, 1, 1, 4, 2, 4, 1, 5, 1, 1, 1, 1, 1, 1, 4, 3, 4, 1, 7, 1, 1, 1, 2, 2, 1, 1, 1, 1, 5, 3, 6, 2, 9, 1, 2, 1, 3, 4, 1, 1, 1, 1, 1, 1, 5, 3, 6, 2, 12, 1, 2, 1, 4, 1, 6, 2, 2, 1, 2, 1, 1, 1, 2
Offset: 0

Views

Author

Alois P. Heinz, Apr 01 2015

Keywords

Comments

Sum_{k>=0} A256553(n,k)*T(n,k) = A181844(n).

Examples

			Triangle T(n,k) begins:
  1;
  1;
  1, 1;
  1, 1, 1;
  1, 2, 1, 1;
  1, 2, 1, 1, 1, 1;
  1, 3, 2, 2, 1, 2;
  1, 3, 2, 2, 1, 3, 1, 1, 1;
  1, 4, 2, 4, 1, 5, 1, 1, 1, 1, 1;
  1, 4, 3, 4, 1, 7, 1, 1, 1, 2, 2, 1, 1, 1;
  1, 5, 3, 6, 2, 9, 1, 2, 1, 3, 4, 1, 1, 1, 1, 1;
		

Crossrefs

Row sums give A000041.
Row lengths give A009490.
Columns k=1-9 give: A000012, A004526, A002264, A008642(n-4), A002266, A074752, A132270, A008643(n-8) for n>7, A008649(n-9) for n>8.
Last elements of rows give A074064.
Main diagonal gives A074761.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, x,
          b(n, i-1)+(p-> add(coeff(p, x, t)*x^ilcm(t, i),
          t=1..degree(p)))(add(b(n-i*j, i-1), j=1..n/i)))
        end:
    T:= n->(p->seq((h->`if`(h=0, [][], h))(coeff(p, x, i))
         , i=1..degree(p)))(b(n$2)):
    seq(T(n), n=0..12);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, x, b[n, i - 1] + Function[p, Sum[Coefficient[p, x, t]*x^LCM[t, i], {t, 1, Exponent[p, x]}]][Sum[b[n - i*j, i - 1], {j, 1, n/i}]]]; T[n_] := Function[p, Table[Function[h, If[h == 0, {{}, {}}, h]][Coefficient[p, x, i]], {i, 1, Exponent[p, x]}]][b[n, n]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 23 2017, translated from Maple *)