A256556 If n = 10k+m (0 <= m <= 9) then a(n) = n*k^m.
0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 42, 88, 184, 384, 800, 1664, 3456, 7168, 14848, 30, 93, 288, 891, 2754, 8505, 26244, 80919, 249318, 767637, 40, 164, 672, 2752, 11264, 46080, 188416, 770048, 3145728, 12845056, 50, 255, 1300, 6625
Offset: 1
Examples
10 yields 10*(1^0) = 10; 43 yields 43*(4^3)= 43*64=2754; 68 yields 68*(6^8)= 68*1679616 = 114213888.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a256556 n = n * uncurry (^) (divMod n 10) -- Reinhard Zumkeller, May 02 2015
-
Maple
f:=proc(n) local k,m; m := (n mod 10); k := (n-m)/10; n*k^m; end; [seq(f(n),n=1..40)];
Extensions
Entry revised by N. J. A. Sloane, May 02 2015