A256568 Decimal expansion of Integral_{0..Pi/2} x^2*log(cos(x))^2 dx, one of the log-cosine integrals related to zeta(3).
4, 2, 6, 7, 1, 5, 2, 3, 6, 0, 9, 8, 4, 0, 9, 8, 8, 6, 5, 2, 3, 0, 1, 0, 9, 1, 8, 3, 4, 1, 8, 1, 5, 1, 2, 7, 8, 9, 2, 7, 8, 3, 3, 9, 5, 8, 0, 9, 2, 0, 5, 9, 1, 8, 2, 8, 5, 0, 5, 1, 6, 7, 0, 9, 8, 0, 3, 4, 0, 9, 0, 8, 0, 8, 1, 6, 2, 2, 3, 0, 2, 2, 6, 6, 0, 4, 7, 3, 7, 9, 5, 3, 0, 5, 4, 2, 3, 9, 4, 5, 3, 0, 6, 7, 4
Offset: 1
Examples
4.26715236098409886523010918341815127892783395809205918285...
Links
- Mark W. Coffey, On some log-cosine integrals related to zeta(3), zeta(4), and zeta(6), Journal of Computational and Applied Mathematics 159 (2003) p. 207.
Crossrefs
Cf. A002117.
Programs
-
Mathematica
Pi/1440*(11*Pi^4 + 60*Pi^2*Log[2]^2 + 720*Log[2]*Zeta[3]) // RealDigits[#, 10, 105]& // First
Formula
Pi/1440*(11*Pi^4 + 60*Pi^2*log(2)^2 + 720*log(2)*zeta(3)).