A256603 Numbers D such that D^2 = A^3 + B^4 + C^5 has more than one solution in positive integers (A, B, C).
305, 525, 1206, 1257, 1395, 2048, 2213, 3072, 4348, 6400, 16385, 16640, 16704, 20631, 22872, 23256, 30968, 31407, 32769, 62943, 74515, 77713, 77824, 79776, 82565, 84775, 90432, 98739, 117600, 121250, 133696, 163525, 165628, 171576, 198400, 199872, 243225
Offset: 1
Keywords
Examples
(A, B, C) = (32, 128, 1): 32^3 + 128^4 + 1^5 = 32768 + 268435456 + 1 = 268468225 = 16385^2 (A, B, C) = (1, 128, 8): 1^3 + 128^4 + 8^5 = 1 + 268435456 + 32768 = 268468225 = 16385^2 so 16385 is a term.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..185
Programs
-
PARI
for(D=1,9999,f=-1;for(C=1,sqrtn(D^2-1,5),for(B=1,sqrtn(D^2-C^5-.5,4),ispower(D^2-C^5-B^4,3)&&f++&print1(D",")+next(3))))
Extensions
Inserted a(11),a(16) and added a(19)-a(37) by Lars Blomberg, Apr 17 2015
Comments