A256604 Numbers D such that D^2 = A^2 + B^3 + C^4 has more than one solution in positive integers (A, B, C).
5, 9, 12, 17, 19, 21, 23, 25, 28, 33, 35, 37, 38, 39, 42, 45, 46, 47, 51, 53, 55, 57, 59, 60, 61, 65, 66, 67, 68, 69, 70, 71, 72, 73, 75, 77, 80, 81, 82, 84, 87, 88, 89, 91, 93, 95, 97, 98, 99, 100, 103, 105, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 123, 124, 127, 128, 129, 131, 132, 133, 134, 135, 136, 139, 141
Offset: 1
Keywords
Examples
(A, B, C) = (4, 8, 1): 4^2 + 8^3 + 1^4 = 16 + 512 + 1 = 529 = 23^2 and (A, B, C) = (1, 8, 2): 1^2 + 8^3 + 2^4 = 1 + 512 + 16 = 529 = 23^2, so 23 is a term.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10088
Programs
-
PARI
for(D=2,199,my(f=-1,B,D2C4);for(C=1,sqrtint(D),D2C4=D^2-C^4; B=0;while(B++^3
M. F. Hasler, May 01 2015
Extensions
Inserted a(7)=23 by Lars Blomberg, Apr 26 2015
Comments