cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A256604 Numbers D such that D^2 = A^2 + B^3 + C^4 has more than one solution in positive integers (A, B, C).

Original entry on oeis.org

5, 9, 12, 17, 19, 21, 23, 25, 28, 33, 35, 37, 38, 39, 42, 45, 46, 47, 51, 53, 55, 57, 59, 60, 61, 65, 66, 67, 68, 69, 70, 71, 72, 73, 75, 77, 80, 81, 82, 84, 87, 88, 89, 91, 93, 95, 97, 98, 99, 100, 103, 105, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 123, 124, 127, 128, 129, 131, 132, 133, 134, 135, 136, 139, 141
Offset: 1

Views

Author

M. F. Hasler, Apr 06 2015

Keywords

Comments

The subsequence of terms of A180241 whose square has more than one representation of the given form. See A256603 and A256652 are the analog for A256091 and A255830.

Examples

			(A, B, C) = (4, 8, 1): 4^2 + 8^3 + 1^4 = 16 + 512 + 1 = 529 = 23^2 and
(A, B, C) = (1, 8, 2): 1^2 + 8^3 + 2^4 = 1 + 512 + 16 = 529 = 23^2,
so 23 is a term.
		

Crossrefs

Programs

  • PARI
    for(D=2,199,my(f=-1,B,D2C4);for(C=1,sqrtint(D),D2C4=D^2-C^4; B=0;while(B++^3M. F. Hasler, May 01 2015

Extensions

Inserted a(7)=23 by Lars Blomberg, Apr 26 2015

A256652 Numbers D such that D^2 = A^4 + B^5 + C^6 has more than one solution in positive integers (A, B, C).

Original entry on oeis.org

1257, 32769, 262176, 262208, 1081344, 4198400, 16777217, 16809984
Offset: 1

Views

Author

M. F. Hasler, Apr 06 2015

Keywords

Comments

A subsequence of A255830. Sequences A256604 and A256603 are the analog for A180241 and A256091.
Terms a(2) - a(8) have Hamming weight 2: 32769 = 2^15 + 1, 262176 = 2^18 + 2^5, 262208 = 2^18 + 2^6, 1081344 = 2^20 + 2^15, 4198400 = 2^22 + 2^12, 16777217 = 2^24 + 1, 16809984 = 2^24 + 2^15.
Given D^2 = A^4+B^5+C^6, multiply by u^60, u>1, to get (u^30*D)^2 = (u^15*A)^4 + (u^12*B)^5 + (u^10*C)^6. If D is a solution then so is u^30*D. - Lars Blomberg, Apr 26 2015
Solutions for a(1)-a(8) as well as some larger terms:
..A1.....B1....C1......A2.....B2....C2..............D
..35......8.....6......32......2.....9...........1257
..16......1....32......16.....64.....1..........32769
..64......4....64.....512......4....16.........262176
...8.....32....64.....512.....32.....4.........262208
1024.....64....64.....512....256....32........1081344
.480....240...160....2048....128....16........4198400
...1.....32...256....4096.....32.....1.......16777217
1024.....64...256....4096....256....32.......16809984
.512......4..1024...32768......4....64.....1073741856
1024...4096.....8...32768....256.....8.....1073742336
4096...2048..1024...32768...2048...256.....1090519040
...1..16384....64.....512..16384.....1....34359738369
4096..16384....16......64..16384...256....34359742464
4096..16384..1024...32768..16384...256....34376515584
.512...2048..4096..262144...2048....64....68719738880
...1....256..8192....1024......1..8192...549755813889
1024...4096..8192...32768....256..8192...549756862464
- Lars Blomberg, Apr 26 2015

Examples

			(A, B, C) = (32, 2, 9): 32^4 + 2^5 + 9^6 = 1048576 + 32 + 531441 = 1580049 = 1257^2, and
(A, B, C) = (35, 8, 6): 35^4 + 8^5 + 6^6 = 1500625 + 32768 + 46656 = 1580049 = 1257^2,
so 1257 is a term.
		

Crossrefs

Programs

  • PARI
    is_A256652(D,f=-1)={my(C=0,B,D2C6);while(1A256652(D)&&print1(D",")) \\ Converted to integer arithmetic by M. F. Hasler, May 01 2015

Extensions

a(5)-a(8) from Lars Blomberg, Apr 26 2015

A257298 Numbers whose cube is of the form a^5 + b^5 - c^5 with a >= b > 0 and c not in {a,b}.

Original entry on oeis.org

144, 3969, 4114, 4608, 17918, 18723, 34992, 44944, 53176, 75076, 127008, 131648, 147456, 163500, 171698, 206116, 235225, 347778, 450000, 462220, 573376, 599136, 611524, 660969, 715716, 927799, 943020, 964467, 986049, 999702
Offset: 1

Views

Author

M. F. Hasler, May 21 2015

Keywords

Comments

Otherwise said, d-values of nontrivial solutions to a^5 + b^5 = c^5 + d^3.

Examples

			144^3 = 192^5 + 156^5 - 204^5,
3969^3 = 126^5 + 126^5 - 63^5,
4114^3 = 143^5 + 121^5 - 110^5,
4608^3 = 1536^5 + 1248^5 - 1632^5, ...
		

Crossrefs

Extensions

Most terms computed by Giovanni Resta, May 25 2015

A266967 Numbers D such that D^2 = A^3 + B^4 + C^5 has more than two solutions in positive integers (A, B, C).

Original entry on oeis.org

77824, 1052672, 5921875
Offset: 1

Views

Author

Chai Wah Wu, Jan 07 2016

Keywords

Comments

Subsequence of A256603.

Examples

			640^3 + 224^4 + 80^5 = 1536^3 + 192^4 + 64^5 = 1792^3 + 128^4 + 32^5 = 6056574976 = 77824^2.
768^3 + 1024^4 + 96^5 = 2048^3 + 64^4 + 256^5 = 10240^3 + 64^4 + 128^5 = 1108118339584 = 1052672^2.
6250^3 + 1375^4 + 500^5 = 15625^3 + 250^4 + 500^5 = 31250^3 + 1375^4 + 250^5 = 35068603515625 =  5921875^2.
		

Crossrefs

Showing 1-4 of 4 results.