cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A256603 Numbers D such that D^2 = A^3 + B^4 + C^5 has more than one solution in positive integers (A, B, C).

Original entry on oeis.org

305, 525, 1206, 1257, 1395, 2048, 2213, 3072, 4348, 6400, 16385, 16640, 16704, 20631, 22872, 23256, 30968, 31407, 32769, 62943, 74515, 77713, 77824, 79776, 82565, 84775, 90432, 98739, 117600, 121250, 133696, 163525, 165628, 171576, 198400, 199872, 243225
Offset: 1

Views

Author

M. F. Hasler, Apr 06 2015

Keywords

Comments

A subsequence of A256091. Sequences A256604 and A256652 are the analog for A180241 and A255830.

Examples

			(A, B, C) = (32, 128, 1): 32^3 + 128^4 + 1^5 = 32768 + 268435456 + 1 = 268468225 = 16385^2
(A, B, C) = (1, 128, 8): 1^3 + 128^4 + 8^5 = 1 + 268435456 + 32768 = 268468225 = 16385^2
so 16385 is a term.
		

Crossrefs

Programs

  • PARI
    for(D=1,9999,f=-1;for(C=1,sqrtn(D^2-1,5),for(B=1,sqrtn(D^2-C^5-.5,4),ispower(D^2-C^5-B^4,3)&&f++&print1(D",")+next(3))))

Extensions

Inserted a(11),a(16) and added a(19)-a(37) by Lars Blomberg, Apr 17 2015

A256652 Numbers D such that D^2 = A^4 + B^5 + C^6 has more than one solution in positive integers (A, B, C).

Original entry on oeis.org

1257, 32769, 262176, 262208, 1081344, 4198400, 16777217, 16809984
Offset: 1

Views

Author

M. F. Hasler, Apr 06 2015

Keywords

Comments

A subsequence of A255830. Sequences A256604 and A256603 are the analog for A180241 and A256091.
Terms a(2) - a(8) have Hamming weight 2: 32769 = 2^15 + 1, 262176 = 2^18 + 2^5, 262208 = 2^18 + 2^6, 1081344 = 2^20 + 2^15, 4198400 = 2^22 + 2^12, 16777217 = 2^24 + 1, 16809984 = 2^24 + 2^15.
Given D^2 = A^4+B^5+C^6, multiply by u^60, u>1, to get (u^30*D)^2 = (u^15*A)^4 + (u^12*B)^5 + (u^10*C)^6. If D is a solution then so is u^30*D. - Lars Blomberg, Apr 26 2015
Solutions for a(1)-a(8) as well as some larger terms:
..A1.....B1....C1......A2.....B2....C2..............D
..35......8.....6......32......2.....9...........1257
..16......1....32......16.....64.....1..........32769
..64......4....64.....512......4....16.........262176
...8.....32....64.....512.....32.....4.........262208
1024.....64....64.....512....256....32........1081344
.480....240...160....2048....128....16........4198400
...1.....32...256....4096.....32.....1.......16777217
1024.....64...256....4096....256....32.......16809984
.512......4..1024...32768......4....64.....1073741856
1024...4096.....8...32768....256.....8.....1073742336
4096...2048..1024...32768...2048...256.....1090519040
...1..16384....64.....512..16384.....1....34359738369
4096..16384....16......64..16384...256....34359742464
4096..16384..1024...32768..16384...256....34376515584
.512...2048..4096..262144...2048....64....68719738880
...1....256..8192....1024......1..8192...549755813889
1024...4096..8192...32768....256..8192...549756862464
- Lars Blomberg, Apr 26 2015

Examples

			(A, B, C) = (32, 2, 9): 32^4 + 2^5 + 9^6 = 1048576 + 32 + 531441 = 1580049 = 1257^2, and
(A, B, C) = (35, 8, 6): 35^4 + 8^5 + 6^6 = 1500625 + 32768 + 46656 = 1580049 = 1257^2,
so 1257 is a term.
		

Crossrefs

Programs

  • PARI
    is_A256652(D,f=-1)={my(C=0,B,D2C6);while(1A256652(D)&&print1(D",")) \\ Converted to integer arithmetic by M. F. Hasler, May 01 2015

Extensions

a(5)-a(8) from Lars Blomberg, Apr 26 2015

A267216 Numbers D such that D^2 = A^2 + B^3 + C^4 has more than two solutions in positive integers (A, B, C).

Original entry on oeis.org

9, 21, 28, 33, 45, 47, 51, 53, 55, 61, 65, 66, 68, 69, 70, 73, 75, 77, 81, 82, 84, 87, 89, 91, 93, 95, 97, 103, 105, 107, 108, 109, 110, 111, 113, 114, 116, 117, 119, 123, 128, 129, 131, 133, 135, 136, 139, 142, 143, 145, 147, 149, 150, 152, 154, 156, 157, 161
Offset: 1

Views

Author

Chai Wah Wu, Feb 01 2016

Keywords

Comments

Subsequence of A256604.

Examples

			9^2 = 1^2 + 4^3 + 2^4 = 4^2 + 4^3 + 1^4 = 8^2 + 1^3 + 2^4.
21^2 = 11^2 + 4^3 + 4^4 = 12^2 + 6^3 + 3^4 = 19^2 + 4^3 + 2^4.
		

Crossrefs

Cf. A256604.
Showing 1-3 of 3 results.