cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256608 Longest eventual period of a^(2^k) mod n for all a.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 4, 1, 2, 2, 1, 1, 1, 2, 6, 1, 2, 4, 10, 1, 4, 2, 6, 2, 3, 1, 4, 1, 4, 1, 2, 2, 6, 6, 2, 1, 4, 2, 6, 4, 2, 10, 11, 1, 6, 4, 1, 2, 12, 6, 4, 2, 6, 3, 28, 1, 4, 4, 2, 1, 2, 4, 10, 1, 10, 2, 12, 2, 6, 6, 4, 6, 4, 2, 12, 1, 18, 4, 20, 2, 1, 6
Offset: 1

Views

Author

Ivan Neretin, Apr 04 2015

Keywords

Comments

a(n) is a divisor of phi(phi(n)) (A010554).

Examples

			In other words, eventual period of {0..n-1} under the map x -> x^2 mod n.
For example, with n=10 the said map acts as follows. Read down the columns: the column headed 2 for example means that (repeatedly squaring mod 10), 2 goes to 4 goes to 16 = 6 (mod 10) goes to 36 = 6 mod 10 --- and has reached a fixed point.
0 1 2 3 4 5 6 7 8 9
0 1 4 9 6 5 6 9 4 1
0 1 6 1 6 5 6 1 6 1
0 1 6 1 6 5 6 1 6 1
and thus every number reaches a fixed point. This means the eventual common period is 1, hence a(10)=1.
		

Crossrefs

First differs from A256607 at n=43.
LCM of entries in row n of A279185.

Programs

  • Mathematica
    a[n_] := With[{lambda = CarmichaelLambda[n]}, MultiplicativeOrder[2, lambda / (2^IntegerExponent[lambda, 2])]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jan 28 2016 *)
  • PARI
    rpsi(n) = lcm(znstar(n)[2]); \\ A002322
    pb(n) = znorder(Mod(2, n/2^valuation(n, 2))); \\ A007733
    a(n) = pb(rpsi(n)); \\ Michel Marcus, Jan 28 2016

Formula

a(n) = A007733(A002322(n)).
a(prime(n)) = A037178(n). - Michel Marcus, Jan 27 2016

Extensions

Name changed by Jianing Song, Feb 02 2025