A256608 Longest eventual period of a^(2^k) mod n for all a.
1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 4, 1, 2, 2, 1, 1, 1, 2, 6, 1, 2, 4, 10, 1, 4, 2, 6, 2, 3, 1, 4, 1, 4, 1, 2, 2, 6, 6, 2, 1, 4, 2, 6, 4, 2, 10, 11, 1, 6, 4, 1, 2, 12, 6, 4, 2, 6, 3, 28, 1, 4, 4, 2, 1, 2, 4, 10, 1, 10, 2, 12, 2, 6, 6, 4, 6, 4, 2, 12, 1, 18, 4, 20, 2, 1, 6
Offset: 1
Keywords
Examples
In other words, eventual period of {0..n-1} under the map x -> x^2 mod n. For example, with n=10 the said map acts as follows. Read down the columns: the column headed 2 for example means that (repeatedly squaring mod 10), 2 goes to 4 goes to 16 = 6 (mod 10) goes to 36 = 6 mod 10 --- and has reached a fixed point. 0 1 2 3 4 5 6 7 8 9 0 1 4 9 6 5 6 9 4 1 0 1 6 1 6 5 6 1 6 1 0 1 6 1 6 5 6 1 6 1 and thus every number reaches a fixed point. This means the eventual common period is 1, hence a(10)=1.
Links
- Ivan Neretin, Table of n, a(n) for n = 1..10000
- Haifeng Xu, The largest cycles consist by the quadratic residues and Fermat primes, arXiv:1601.06509 [math.NT], 2016.
Crossrefs
Programs
-
Mathematica
a[n_] := With[{lambda = CarmichaelLambda[n]}, MultiplicativeOrder[2, lambda / (2^IntegerExponent[lambda, 2])]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jan 28 2016 *)
-
PARI
rpsi(n) = lcm(znstar(n)[2]); \\ A002322 pb(n) = znorder(Mod(2, n/2^valuation(n, 2))); \\ A007733 a(n) = pb(rpsi(n)); \\ Michel Marcus, Jan 28 2016
Formula
a(prime(n)) = A037178(n). - Michel Marcus, Jan 27 2016
Extensions
Name changed by Jianing Song, Feb 02 2025
Comments