A256661 Rectangular array by antidiagonals: row n shows the numbers k such that R(k) consists of n terms, where R(k) is the minimal alternating Fibonacci representation of k.
1, 2, 4, 3, 6, 9, 5, 7, 14, 25, 8, 10, 15, 38, 64, 13, 11, 17, 40, 98, 169, 21, 12, 22, 41, 103, 258, 441, 34, 16, 23, 46, 104, 271, 674, 1156, 55, 18, 24, 59, 106, 273, 708, 1766, 3025, 89, 19, 27, 61, 119, 274, 713, 1855, 4622, 7921, 144, 20, 28, 62, 153
Offset: 1
Examples
Northwest corner: 1 2 3 5 8 13 21 4 6 7 10 11 12 62 9 14 15 17 22 23 24 25 38 40 41 46 59 61 64 98 103 104 106 119 153 169 258 271 273 274 279 313 R(1) = 1, in row 1 R(2) = 2, in row 1 R(3) = 3, in row 1 R(4) = 5 - 1, in row 2 R(9) = 13 - 5 + 1, in row 3 R(25) = 34 - 13 + 5 - 1, in row 4 R(64) = 89 - 34 + 13 - 5 + 1, in row 5
Programs
-
Mathematica
b[n_] = Fibonacci[n]; bb = Table[b[n], {n, 1, 70}]; h[0] = {1}; h[n_] := Join[h[n - 1], Table[b[n + 2], {k, 1, b[n]}]]; g = h[23]; r[0] = {0}; r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, -r[g[[n]] - n]]]; u = Table[Length[r[n]], {n, 1, 6000}]; TableForm[Table[Flatten[Position[u, k]], {k, 1, 9}]]
Comments