A256665 Triangle of Arnold L(b) for Springer numbers.
0, 1, 1, 0, 1, 2, 11, 11, 10, 8, 0, 11, 22, 32, 40, 361, 361, 350, 328, 296, 256, 0, 361, 722, 1072, 1400, 1696, 1952, 24611, 24611, 24250, 23528, 22456, 21056, 19360, 17408, 0, 24611, 49222, 73472, 97000, 119456, 140512, 159872, 177280
Offset: 0
Examples
Triangle begins: 0; 1, 1; 0, 1, 2; 11, 11, 10, 8; 0, 11, 22, 32, 40; 361, 361, 350, 328, 296, 256;
Links
- Vladimir Igorevich Arnol'd, The calculus of snakes and the combinatorics of Bernoulli, Euler and Springer numbers of Coxeter groups, Uspekhi Mat. nauk., Vol. 47, No. 1 (1992), pp. 3-45; English version, Russian Math. Surveys, Vol. 47 (1992), pp. 1-51.
Programs
-
Mathematica
T[n_, m_] := Abs[Sum[Binomial[m, 2*k+m-n-1]*Sum[4^i*EulerE[2*i]*Binomial[2*k-1, 2*i], {i, 0, k}], {k, Floor[(n-m+1)/2], (n+1)/2}]]; Table[T[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Apr 07 2015, translated from Maxima *)
-
Maxima
T(n,m):=abs(sum(binomial(m,2*k+m-n-1)*sum(4^i*euler(2*i)*binomial(2*k-1,2*i),i,0,k),k,floor((n-m+1)/2),(n+1)/2));
Formula
E.g.f.: sinh(x+y)/cosh(2*(x+y))*exp(-y).
T(n,m) = abs(Sum_{k=floor((n-m+1)/2)..floor((n+1)/2)} C(m,2*k+m-n-1)*Sum_{i=0..k} 4^i*Euler(2*i)*C(2*k-1,2*i)).
Comments