cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256665 Triangle of Arnold L(b) for Springer numbers.

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 11, 11, 10, 8, 0, 11, 22, 32, 40, 361, 361, 350, 328, 296, 256, 0, 361, 722, 1072, 1400, 1696, 1952, 24611, 24611, 24250, 23528, 22456, 21056, 19360, 17408, 0, 24611, 49222, 73472, 97000, 119456, 140512, 159872, 177280
Offset: 0

Views

Author

Vladimir Kruchinin, Apr 07 2015

Keywords

Comments

Named after Soviet and Russian mathematician Vladimir Igorevich Arnold (1937-2010). - Amiram Eldar, Jun 13 2021

Examples

			Triangle begins:
    0;
    1,   1;
    0,   1,   2;
   11,  11,  10,   8;
    0,  11,  22,  32,  40;
  361, 361, 350, 328, 296, 256;
		

Programs

  • Mathematica
    T[n_, m_] := Abs[Sum[Binomial[m, 2*k+m-n-1]*Sum[4^i*EulerE[2*i]*Binomial[2*k-1, 2*i], {i, 0, k}], {k, Floor[(n-m+1)/2], (n+1)/2}]]; Table[T[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Apr 07 2015, translated from Maxima *)
  • Maxima
    T(n,m):=abs(sum(binomial(m,2*k+m-n-1)*sum(4^i*euler(2*i)*binomial(2*k-1,2*i),i,0,k),k,floor((n-m+1)/2),(n+1)/2));

Formula

E.g.f.: sinh(x+y)/cosh(2*(x+y))*exp(-y).
T(n,m) = abs(Sum_{k=floor((n-m+1)/2)..floor((n+1)/2)} C(m,2*k+m-n-1)*Sum_{i=0..k} 4^i*Euler(2*i)*C(2*k-1,2*i)).