A256667 Decimal expansion of Integral_{x=0..Pi/2} sqrt(2-sin(x)^2) dx, an elliptic integral once studied by John Landen.
1, 9, 1, 0, 0, 9, 8, 8, 9, 4, 5, 1, 3, 8, 5, 6, 0, 0, 8, 9, 5, 2, 3, 8, 1, 0, 4, 1, 0, 8, 5, 7, 2, 1, 6, 4, 5, 9, 5, 4, 9, 8, 3, 8, 0, 7, 3, 2, 3, 6, 3, 7, 3, 6, 0, 5, 4, 0, 2, 4, 8, 3, 2, 8, 3, 7, 3, 5, 9, 7, 9, 0, 0, 6, 0, 7, 1, 6, 4, 9, 6, 0, 5, 3, 3, 0, 9, 0, 5, 4, 4, 7, 2, 5, 6, 1, 1, 2, 4, 1, 4, 1, 1, 0, 2
Offset: 1
Examples
1.91009889451385600895238104108572164595498380732363736...
References
- Mark Pinsky, Björn Birnir, Probability, Geometry and Integrable Systems (Cambridge University Press 2007), p. 289.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's MathWorld, Lemniscate Constant
- Wikipedia, John Landen
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:= RealField(); (1/Sqrt(2*Pi(R)))*(Gamma(3/4)^2 + 4*Gamma(5/4)^2); // G. C. Greubel, Oct 07 2018
-
Mathematica
RealDigits[(1/Sqrt[2*Pi])*(Gamma[3/4]^2 + 4*Gamma[5/4]^2), 10, 105] // First
-
PARI
default(realprecision, 100); (1/sqrt(2*Pi))*(gamma(3/4)^2 + 4*gamma(5/4)^2) \\ G. C. Greubel, Oct 07 2018
Formula
Equals (1/sqrt(2*Pi))*(Gamma(3/4)^2 + 4*Gamma(5/4)^2).
Equals sqrt(2)*E(Pi/2 | 1/2), where E(phi|m) is the elliptic integral of the second kind.
Equals (L^2 + Pi)/(2*L), where L is the lemniscate constant 2.622...
Comments