A256684 Decimal expansion of the [negated] abscissa of the Gamma function local maximum in the interval [-7,-6].
6, 6, 7, 8, 4, 1, 8, 2, 1, 3, 0, 7, 3, 4, 2, 6, 7, 4, 2, 8, 2, 9, 8, 5, 5, 8, 8, 8, 6, 0, 2, 2, 0, 0, 0, 9, 9, 2, 0, 4, 6, 8, 6, 0, 1, 0, 1, 5, 0, 7, 6, 0, 1, 4, 3, 3, 9, 7, 5, 0, 1, 3, 1, 9, 8, 3, 4, 9, 5, 6, 1, 8, 2, 2, 9, 0, 5, 8, 7, 2, 6, 6, 6, 2, 0, 1, 5, 6, 2, 2, 6, 5, 8, 8, 9, 7, 4, 8, 1, 6, 0, 6, 7, 3
Offset: 1
Examples
Gamma(-6.6784182130734267428298558886022000992046860101507601433975...) = -0.0013973966089497673013074886687985785170487809897563228...
Links
- Eric Weisstein's MathWorld, Gamma Function
- Wikipedia, Particular values of the Gamma Function
Programs
-
Mathematica
digits = 104; x0 = x /. FindRoot[PolyGamma[0, x] == 0, {x, -13/2}, WorkingPrecision -> digits + 5]; RealDigits[x0, 10, digits] // First
Formula
Solution to PolyGamma(x) = 0 in the interval [-7,-6]