A256683 Decimal expansion of the [negated] abscissa of the Gamma function local minimum in the interval [-6,-5].
5, 6, 6, 7, 1, 6, 2, 4, 4, 1, 5, 5, 6, 8, 8, 5, 5, 3, 5, 8, 4, 9, 4, 7, 4, 1, 7, 4, 5, 1, 8, 1, 5, 5, 4, 2, 4, 7, 1, 1, 7, 9, 5, 7, 8, 7, 6, 9, 4, 8, 4, 8, 8, 9, 3, 6, 7, 0, 4, 1, 9, 7, 3, 3, 3, 2, 6, 7, 8, 1, 4, 9, 4, 9, 9, 3, 8, 5, 8, 1, 4, 3, 4, 2, 8, 9, 1, 3, 3, 7, 7, 2, 7, 3, 3, 8, 7, 2, 2, 8, 5, 0, 4, 5
Offset: 1
Examples
Gamma(-5.66716244155688553584947417451815542471179578769484889367...) = 0.00932459448261485052171192379918266310927330588790814482...
Links
- Eric Weisstein's MathWorld, Gamma Function
- Wikipedia, Particular values of the Gamma Function
Programs
-
Mathematica
digits = 104; x0 = x /. FindRoot[PolyGamma[0, x] == 0, {x, -11/2}, WorkingPrecision -> digits + 5]; RealDigits[x0, 10, digits] // First
Formula
Solution to PolyGamma(x) = 0 in the interval [-6,-5]
Comments