A256705 Numbers n such that if we define f(n,m) by the recursion f(n,1)=n, f(n,k+1)= A007672(n,k), the subsequence f(n,k), with n constant, is eventually periodic with period two.
9, 16, 25, 45, 49, 63, 75, 80, 81, 99, 112, 117, 121, 125, 128, 147, 153, 169, 171, 175, 176, 207, 208, 225, 243, 245, 250, 256, 261, 275, 279, 289, 304, 315, 325, 333, 343, 361, 363, 368, 369, 375, 387, 405, 423, 425, 441, 464, 475, 477, 486, 495, 496, 500, 507, 512, 525, 529, 531, 539, 549, 560
Offset: 1
Keywords
Examples
16 is in the sequence because f(16,1) = 16, f(16,2) = A007672(16) = 45, f(16,3) = A007672(45) = 16, f(16,4) = A007672(16) = 45, ..., a sequence with period 2. 15 is not in the sequence, then f(15,1) = 15, f(15,2) = A007672(15) = 8, f(15,3) = A007672(8) = 3, f(15,4) = A007672(3) = 2, f(15,5) = A007672(2) = 1, f(15,6) = A007672(1) = 1, ..., a sequence with period 1.
Programs
-
PARI
b(n)=my(m=1,x=n,as=1,p); while(x>1, m++; p=gcd(x,m); x/=p; as*=m/p); as /* A007672(n) */ for(i=1,10^3, m=i; v=1; while(m>1&&v, n=b(m); if(m==b(n), v=0; print1(i,", ")); m=n))
Comments