A256716 a(n) = n*(n+1)*(22*n-19)/6.
0, 1, 25, 94, 230, 455, 791, 1260, 1884, 2685, 3685, 4906, 6370, 8099, 10115, 12440, 15096, 18105, 21489, 25270, 29470, 34111, 39215, 44804, 50900, 57525, 64701, 72450, 80794, 89755, 99355, 109616, 120560, 132209, 144585, 157710, 171606, 186295, 201799, 218140
Offset: 0
References
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (22nd row of the table).
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[n*(n+1)*(22*n-19)/6: n in [0..40]];
-
Mathematica
Table[n (n + 1) (22 n - 19)/6, {n, 0, 40}]
-
PARI
vector(40, n, n--; n*(n+1)*(22*n-19)/6)
-
Sage
[n*(n+1)*(22*n-19)/6 for n in (0..40)]
Formula
G.f.: x*(1 + 21*x)/(1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) with n>3, a(0)=0, a(1)=1, a(2)=25, a(3)=94.
a(n) = Sum_{i=0..n-1} (n-i)*(22*i+1) for n>0.
E.g.f.: exp(x)*x*(6 + 69*x + 22*x^2)/6. - Elmo R. Oliveira, Aug 04 2025
Comments