cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256716 a(n) = n*(n+1)*(22*n-19)/6.

Original entry on oeis.org

0, 1, 25, 94, 230, 455, 791, 1260, 1884, 2685, 3685, 4906, 6370, 8099, 10115, 12440, 15096, 18105, 21489, 25270, 29470, 34111, 39215, 44804, 50900, 57525, 64701, 72450, 80794, 89755, 99355, 109616, 120560, 132209, 144585, 157710, 171606, 186295, 201799, 218140
Offset: 0

Views

Author

Bruno Berselli, Apr 09 2015

Keywords

Comments

This sequence is related to the tridecagonal numbers (A051865) by a(n) = n*A051865(n) - Sum_{i=0..n-1} A051865(i).

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (22nd row of the table).

Crossrefs

Partial sums of A051876.
Cf. similar sequences listed in A237616.
Cf. A051865.

Programs

  • Magma
    [n*(n+1)*(22*n-19)/6: n in [0..40]];
  • Mathematica
    Table[n (n + 1) (22 n - 19)/6, {n, 0, 40}]
  • PARI
    vector(40, n, n--; n*(n+1)*(22*n-19)/6)
    
  • Sage
    [n*(n+1)*(22*n-19)/6 for n in (0..40)]
    

Formula

G.f.: x*(1 + 21*x)/(1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) with n>3, a(0)=0, a(1)=1, a(2)=25, a(3)=94.
a(n) = Sum_{i=0..n-1} (n-i)*(22*i+1) for n>0.
E.g.f.: exp(x)*x*(6 + 69*x + 22*x^2)/6. - Elmo R. Oliveira, Aug 04 2025