A256717 Decimal expansion of G(5/4) where G is the Barnes G-function.
1, 0, 6, 5, 0, 4, 4, 5, 3, 8, 5, 3, 0, 9, 5, 5, 7, 1, 7, 1, 5, 9, 7, 1, 7, 5, 8, 3, 6, 9, 4, 9, 7, 7, 1, 4, 1, 9, 3, 7, 3, 4, 9, 0, 7, 3, 2, 6, 9, 7, 6, 1, 8, 9, 2, 2, 2, 1, 3, 9, 9, 3, 1, 5, 2, 0, 0, 4, 3, 8, 3, 7, 6, 1, 6, 8, 6, 0, 2, 2, 4, 4, 7, 6, 4, 6, 1, 5, 2, 5, 1, 0, 9, 9, 2, 8, 1, 4, 9, 1, 9, 4, 2, 3
Offset: 1
Examples
1.0650445385309557171597175836949771419373490732697618922213...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- J.-P. Allouche, A note on products involving zeta(3) and Catalan's constant. arXiv:1305.6247v3 [math.NT], 2013-2014, p. 7.
- Eric Weisstein's MathWorld, Barnes G-Function
- Wikipedia, Barnes G-function
Crossrefs
Programs
-
Mathematica
RealDigits[BarnesG[5/4], 10, 104] // First RealDigits[Exp[3/32 - Catalan/(4*Pi)]*Gamma[1/4]^(1/4)/Glaisher^(9/8), 10, 100][[1]] (* G. C. Greubel, Aug 25 2018 *)
-
PARI
exp(3/32 - Catalan/(4*Pi))*gamma(1/4)^(1/4)/exp(3/32-9*zeta'(-1)/8) \\ Charles R Greathouse IV, Jul 01 2016
Formula
Equals exp(3/32 - Catalan/(4*Pi))*Gamma(1/4)^(1/4)/Glaisher^(9/8).
Equals G(1/4)*Gamma(1/4). - Vaclav Kotesovec, Apr 09 2015