A256774 All factorials n! along with powers of the numbers n and n+1 that fall in between n! and (n+1)!, in increasing order.
1, 2, 3, 4, 6, 9, 16, 24, 25, 64, 120, 125, 216, 625, 720, 1296, 2401, 5040, 16807, 32768, 40320, 59049, 262144, 362880, 531441, 1000000, 3628800, 10000000, 19487171, 39916800, 214358881, 429981696, 479001600, 815730721, 5159780352, 6227020800, 10604499373, 20661046784, 87178291200, 289254654976
Offset: 1
Examples
With n=1: 1! < 2! gives a(1)=1, a(2)=2. With n=2: 2! < 3^1 < 2^2 < 3! gives a(3)=3, a(4)=4, a(5)=6. With n=3: 3! < 3^2 < 4^2 < 4! gives a(6)=9, a(7)=16, a(8)=24. With n=4: 4! < 5^2 < 4^3 < 5! gives a(9)=25, a(10)=64, a(11)=120. With n=5: 5! < 5^3 < 6^3 < 5^4 < 6! gives a(12)=125, a(13)=216, a(14)=625, a(15)=720
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..1346
Programs
-
Mathematica
f[n_] := Block[{a = n!, b = (n + 1)!}, Sort@ Union[{a}, n^Range[Ceiling@ Log[n, a], Floor@ Log[n, b]], (n + 1)^Range[Ceiling@ Log[n + 1, a], Floor@ Log[n + 1, b]]]]; {1}~Join~(f /@ Range[2, 14] // Flatten) (* Michael De Vlieger, Apr 15 2015 *)
-
PARI
tabf(nn) = {print([1]); for (n=2, nn, v = [n!]; ka = ceil(log(n!+1)/log(n)); kb = floor(log((n+1)!-1)/log(n)); for (k=ka, kb, v = concat(v, n^k);); ka = ceil(log(n!+1)/log(n+1)); kb = floor(log((n+1)!-1)/log(n+1)); for (k=ka, kb, v = concat(v, (n+1)^k);); print(vecsort(v));); } \\ Michel Marcus, Apr 22 2015
Comments