A256778 Decimal expansion of the generalized Euler constant gamma(1,4).
7, 1, 0, 2, 8, 9, 7, 9, 3, 0, 6, 4, 0, 9, 3, 6, 9, 7, 3, 1, 3, 7, 6, 6, 4, 7, 5, 7, 9, 5, 0, 8, 2, 6, 1, 0, 3, 0, 4, 0, 6, 1, 0, 4, 2, 4, 9, 6, 9, 3, 2, 9, 4, 0, 8, 5, 3, 4, 7, 9, 8, 8, 5, 1, 3, 3, 0, 4, 2, 3, 8, 7, 9, 7, 2, 6, 1, 5, 9, 7, 1, 4, 6, 4, 2, 0, 6, 9, 5, 0, 7, 3, 9, 8, 0, 5, 9, 9, 2, 7, 6, 1, 9
Offset: 0
Examples
0.71028979306409369731376647579508261030406104249693294...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.3, p. 32.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- D. H. Lehmer, Euler constants for arithmetic progressions, Acta Arith. 27 (1975), p. 134.
Crossrefs
Programs
-
Magma
R:=RealField(100); (2*EulerGamma(R) + Pi(R) + 2*Log(2))/8; // G. C. Greubel, Aug 27 2018
-
Mathematica
RealDigits[EulerGamma/4 + Pi/8 + Log[2]/4, 10, 103] // First
-
PARI
default(realprecision, 100); (2*Euler + Pi + 2*log(2))/8 \\ G. C. Greubel, Aug 27 2018
Formula
Equals (2*EulerGamma + Pi + 2*log(2))/8.
Equals Sum_{n>=0} (1/(4n+1) - 1/2*arctanh(2/(4n+3))).