cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256778 Decimal expansion of the generalized Euler constant gamma(1,4).

Original entry on oeis.org

7, 1, 0, 2, 8, 9, 7, 9, 3, 0, 6, 4, 0, 9, 3, 6, 9, 7, 3, 1, 3, 7, 6, 6, 4, 7, 5, 7, 9, 5, 0, 8, 2, 6, 1, 0, 3, 0, 4, 0, 6, 1, 0, 4, 2, 4, 9, 6, 9, 3, 2, 9, 4, 0, 8, 5, 3, 4, 7, 9, 8, 8, 5, 1, 3, 3, 0, 4, 2, 3, 8, 7, 9, 7, 2, 6, 1, 5, 9, 7, 1, 4, 6, 4, 2, 0, 6, 9, 5, 0, 7, 3, 9, 8, 0, 5, 9, 9, 2, 7, 6, 1, 9
Offset: 0

Views

Author

Jean-François Alcover, Apr 10 2015

Keywords

Examples

			0.71028979306409369731376647579508261030406104249693294...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.3, p. 32.

Crossrefs

Cf. A001620 (EulerGamma), A016627, A020777, A228725 (gamma(1,2)), A256425 (gamma(1,3)), A256779-A256784 (selection of ruler-and-compass constructible gamma(r,k)).

Programs

  • Magma
    R:=RealField(100); (2*EulerGamma(R) + Pi(R) + 2*Log(2))/8; // G. C. Greubel, Aug 27 2018
  • Mathematica
    RealDigits[EulerGamma/4 + Pi/8 + Log[2]/4, 10, 103] // First
  • PARI
    default(realprecision, 100); (2*Euler + Pi + 2*log(2))/8 \\ G. C. Greubel, Aug 27 2018
    

Formula

Equals (2*EulerGamma + Pi + 2*log(2))/8.
Equals Sum_{n>=0} (1/(4n+1) - 1/2*arctanh(2/(4n+3))).
Equals -(psi(1/4) + log(4))/4 = (A020777 - A016627)/4. - Amiram Eldar, Jan 07 2024