A256787 Smallest odd number k such that k*2^(2*n+1)+1 is a prime number.
1, 5, 3, 5, 15, 9, 5, 5, 9, 11, 11, 45, 5, 15, 23, 35, 9, 59, 15, 5, 3, 9, 35, 27, 23, 17, 51, 5, 29, 27, 53, 9, 9, 9, 23, 39, 23, 5, 29, 249, 9, 51, 5, 75, 51, 117, 29, 77, 131, 219, 221, 29, 53, 105, 321, 95, 179, 197, 101, 51, 81, 101, 11, 5, 21, 221, 53
Offset: 0
Keywords
Examples
1*2^(2*0+1)+1=3 is prime, so a(0)=1. 1*2^(2*1+1)+1=9 and 3*2^(2*1+1)+1=25 are composite, 5*2^(2*1+1)+1=41 is prime, so a(1)=5.
Links
- Pierre CAMI, Table of n, a(n) for n = 0..10000
Programs
-
Maple
for n from 0 to 100 do R:= 2^(2*n+1); for k from 1 by 2 do if isprime(k*R+1) then A[n]:= k; break fi od: od: seq(A[n],n=0..100); # Robert Israel, Apr 24 2015
-
Mathematica
f[n_] := Block[{g, i, k}, g[x_, y_] := y*2^(2*x + 1) + 1; Reap@ For[i = 0, i <= n, i++, k = 1; While[Nand[PrimeQ[g[i, k]] == True, OddQ@ k], k++]; Sow@ k] // Flatten // Rest]; f@ 66 (* Michael De Vlieger, Apr 18 2015 *)
-
PARI
vector(100, n, n--; k=1; while(!isprime(k*2^(2*n+1)+1), k+=2); k) \\ Colin Barker, Apr 10 2015
Comments