cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256799 Catalan number analogs for A099927, the generalized binomial coefficients for Pell numbers (A000129).

Original entry on oeis.org

1, 1, 6, 203, 40222, 46410442, 312163223724, 12237378320283699, 2796071362211148193590, 3723566980632561787914135870, 28901575272390972687956930234335380, 1307480498356321410289575304307661963042110, 344746842780849469098742541704318199701366091840620
Offset: 0

Views

Author

Tom Edgar, Apr 10 2015

Keywords

Comments

One definition of the Catalan numbers is binomial(2*n,n) / (n+1); the current sequence models this definition using the generalized binomial coefficients arising from Pell numbers (A000129).

Examples

			a(5) = Pell(10)..Pell(7)/Pell(5)..Pell(1) = (2378*985*408*169)/(29*12*5*2*1) = 46410442.
a(3) = A099927(6,3)/Pell(3) = 2436/12 = 203.
		

Crossrefs

Programs

  • Maple
    p:= n-> (<<2|1>, <1|0>>^n)[1, 2]:
    a:= n-> mul(p(i), i=n+2..2*n)/mul(p(i), i=1..n):
    seq(a(n), n=0..12);  # Alois P. Heinz, Apr 10 2015
  • Mathematica
    Pell[m_]:=Expand[((1+Sqrt[2])^m-(1-Sqrt[2])^m)/(2*Sqrt[2])]; Table[Product[Pell[k],{k,1,2*n}]/(Product[Pell[k],{k,1,n}])^2 / Pell[n+1],{n,0,15}] (* Vaclav Kotesovec, Apr 10 2015 *)
  • Sage
    P=[lucas_number1(n, 2, -1) for n in [0..30]]
    [1/P[n+1]*prod(P[1:2*n+1])/(prod(P[1:n+1]))^2 for n in [0..14]]

Formula

a(n) = Pell(2n)Pell(2n-1)...Pell(n+2)/Pell(n)Pell(n-1)...Pell(1) = A099927(2*n,n)/Pell(n+1) = A099929(n)/Pell(n+1), where Pell(k) = A000129(k).
a(n) ~ 2^(3/2) * (1+sqrt(2))^(n^2-n-1) / c, where c = A256831 = 1.141982569667791206028... . - Vaclav Kotesovec, Apr 10 2015