A256846 Decimal expansion of the generalized Euler constant gamma(3,4) (negated).
0, 7, 5, 1, 0, 8, 3, 7, 0, 3, 3, 3, 3, 5, 4, 6, 1, 2, 3, 0, 1, 8, 9, 4, 3, 7, 0, 0, 2, 4, 7, 9, 3, 1, 1, 0, 7, 4, 5, 2, 3, 1, 3, 0, 7, 3, 4, 6, 8, 4, 3, 5, 1, 4, 3, 9, 0, 2, 5, 6, 2, 6, 2, 9, 4, 3, 9, 1, 1, 7, 1, 3, 5, 9, 8, 9, 3, 6, 2, 7, 8, 1, 9, 2, 8, 0, 1, 7, 5, 5, 5, 9, 5, 7, 2, 3, 2, 7, 4, 2, 3, 3, 6, 1, 0
Offset: 0
Examples
-0.07510837033335461230189437002479311074523130734684351439...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- D. H. Lehmer, Euler constants for arithmetic progressions, Acta Arith. 27 (1975) p. 134.
Crossrefs
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R)/4 - Pi(R)/8 - Log(4)/4 + Log(8)/4; // G. C. Greubel, Aug 28 2018
-
Mathematica
Join[{0}, RealDigits[-Log[4]/4 - PolyGamma[3/4]/4, 10, 104] // First ]
-
PARI
default(realprecision, 100); Euler/4 - Pi/8 - log(4)/4 + log(8)/4 \\ G. C. Greubel, Aug 28 2018
Formula
-log(4)/4 - PolyGamma(3/4)/4 = EulerGamma/4 - Pi/8 - log(4)/4 + log(8)/4