A256889 Numbers k such that the decimal expansions of both k and k^2 have 1 as smallest digit and 5 as largest digit.
115, 1115, 1235, 3515, 11115, 12335, 12415, 33515, 35415, 123335, 123512, 124235, 145415, 152132, 231115, 235211, 333515, 1114115, 1155211, 1233335, 1531115, 1534312, 2311115, 3333515, 11114115, 11141115, 11145511, 12333335, 12342335, 15334312, 15531115
Offset: 1
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..2000 (n = 1..75 from Robert G. Wilson v).
Programs
-
Mathematica
fQ[n_] := Block[{c = DigitCount@ n}, And[Plus @@ Take[c, {6, 10}] == 0, c[[1]] > 0, c[[5]] > 0]]; Select[Range@ 100000, fQ@ # && fQ[#^2] &] (* Michael De Vlieger, Apr 12 2015 *) fQ[n_] := Block[{id1 = Union@ IntegerDigits[ n], id2 = Union@ IntegerDigits[ n^2]}, Min[id1] == Min[id2] == 1 && Max[id1] == Max[id2] == 5]; k = 1; lst = {}; While[k < 10^7, If[ fQ@ k, AppendTo[lst, k]]; k++; If[ fQ@ k, AppendTo[lst, k]]; k += 3; If[ fQ@ k, AppendTo[lst, k]]; k += 6]; lst (* Robert G. Wilson v, Apr 13 2015 *)
-
PARI
is(n) = vecmin(digits(n))==1 && vecmin(digits(n^2))==1 && vecmax(digits(n))==5 && vecmax(digits(n^2))==5
Comments