A256894 Triangle read by rows, T(n,k) = Sum_{j=0..n-k+1} C(n-1,j-1)*T(n-j,k-1) if k != 0 else 1, n>=0, 0<=k<=n.
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 13, 7, 1, 1, 16, 40, 35, 11, 1, 1, 32, 121, 155, 80, 16, 1, 1, 64, 364, 651, 490, 161, 22, 1, 1, 128, 1093, 2667, 2751, 1316, 294, 29, 1, 1, 256, 3280, 10795, 14721, 9597, 3108, 498, 37, 1, 1, 512, 9841, 43435, 76630, 65352
Offset: 0
Examples
Triangle starts: 1; 1, 1; 1, 2, 1; 1, 4, 4, 1; 1, 8, 13, 7, 1; 1, 16, 40, 35, 11, 1; 1, 32, 121, 155, 80, 16, 1; 1, 64, 364, 651, 490, 161, 22, 1; The signed version is the inverse of A326326: 1; -1, 1; 1, -2, 1; -1, 4, -4, 1; 1, -8, 13, -7, 1; -1, 16, -40, 35, -11, 1; 1, -32, 121, -155, 80, -16, 1; -1, 64, -364, 651, -490, 161, -22, 1. - _Peter Luschny_, Jul 02 2019 T(4,3)=7 is the number of disjoint [4]-covering collections of 4 subsets: {{1},{2},{3},{4}} {{1,2},{3},{4},{}} {{1,3},{2},{4},{}} {{1,4},{2},{3},{}} {{2,3},{1},{4},{}} {{2,4},{1},{3},{}} {{3,4},{1},{2},{}}. - _Manfred Boergens_, Mar 04 2025
Crossrefs
Programs
-
Maple
# Implemented as a sequence transformation acting on f: n -> 1,1,1,1,... . F := proc(n, k, f) option remember; `if`(k=0, f(0)^n, add(binomial(n-1,j-1)*f(j)*F(n-j,k-1,f),j=0..n-k+1)) end: for n from 0 to 7 do seq(F(n,k,j->1), k=0..n) od;
-
Mathematica
Table[StirlingS2[n, m+1]+StirlingS2[n, m], {n, 0, 10}, {m, 0, n}]//Flatten (* Manfred Boergens, Mar 04 2025 *)
Formula
From Manfred Boergens, Mar 04 2025: (Start)
T(n,k) = S2(n,k) + S2(n,k+1).
Comments