A256911 Number of terms in the enhanced triangular-number representation of n.
1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 3, 1, 2, 2, 2, 3, 3, 1, 2, 2, 2, 3, 3, 2, 1, 2, 2, 2, 3, 3, 2, 3, 1, 2, 2, 2, 3, 3, 2, 3, 3, 1, 2, 2, 2, 3, 3, 2, 3, 3, 3, 1, 2, 2, 2, 3, 3, 2, 3, 3, 3, 2, 1, 2, 2, 2, 3, 3, 2, 3, 3, 3, 2, 3, 1, 2, 2, 2, 3, 3, 2, 3
Offset: 0
Examples
R(4) = 3 + 1, so a(4) = 2. R(119) = 105 + 10 + 3 + 1, so a(119) = 4.
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
b[n_] := n (n + 1)/2; bb = Insert[Table[b[n], {n, 0, 200}], 2, 3] s[n_] := Table[b[n], {k, 1, n + 1}]; h[1] = {0, 1, 2}; h[n_] := Join[h[n - 1], s[n]]; g = h[200]; r[0] = {0}; r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, r[n - g[[n]]]]]; t = Table[r[n], {n, 0, 120}] (*A256909 before concatenation*) Flatten[t] (*A256909*) Table[Last[r[n]], {n, 0, 120}] (*A256910*) Table[Length[r[n]], {n, 0, 120}] (*A256911*)
Comments