cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256913 Enhanced squares representations for k = 0, 1, 2, ..., concatenated.

Original entry on oeis.org

0, 1, 2, 3, 4, 4, 1, 4, 2, 4, 3, 4, 3, 1, 9, 9, 1, 9, 2, 9, 3, 9, 4, 9, 4, 1, 9, 4, 2, 16, 16, 1, 16, 2, 16, 3, 16, 4, 16, 4, 1, 16, 4, 2, 16, 4, 3, 16, 4, 3, 1, 25, 25, 1, 25, 2, 25, 3, 25, 4, 25, 4, 1, 25, 4, 2, 25, 4, 3, 25, 4, 3, 1, 25, 9, 25, 9, 1, 36
Offset: 0

Views

Author

Clark Kimberling, Apr 14 2015

Keywords

Comments

Let B = {0,1,2,3,4,9,16,25,...}, so that B consists of the squares together with 2 and 3. We call B the enhanced basis of squares. Define R(0) = 0 and R(n) = g(n) + R(n - g(n)) for n > 0, where g(n) is the greatest number in B that is <= n. Thus, each n has an enhanced squares representation of the form R(n) = b(m(n)) + b(m(n-1)) + ... + b(m(k)), where b(n) > m(n-1) > ... > m(k) > 0, in which the last term, b(m(k)), is the trace.
The least n for which R(n) has 5 terms is given by R(168) = 144 + 16 + 4 + 3 + 1.
The least n for which R(n) has 6 terms is given by R(7224) = 7056 + 144 + 16 + 4 + 3 + 1.

Examples

			R(0) = 0
R(1) = 1
R(2) = 2
R(3) = 3
R(4) = 4
R(8) = 4 + 3 + 1
R(24) = 16 + 4 + 3 + 1
		

Crossrefs

Cf. A000290, A256914 (trace), A256915 (number of terms), A256789 (minimal alternating squares representations).
Cf. A257053 (primes).

Programs

  • Haskell
    a256913 n k = a256913_tabf !! n !! k
    a256913_row n = a256913_tabf !! n
    a256913_tabf = [0] : tail esr where
       esr = (map r [0..8]) ++
               f 9 (map fromInteger $ drop 3 a000290_list) where
         f x gs@(g:hs@(h:_))
           | x < h   = (g : genericIndex esr (x - g)) : f (x + 1) gs
           | otherwise = f x hs
         r 0 = []; r 8 = [4, 3, 1]
         r x = q : r (x - q) where q = [0,1,2,3,4,4,4,4,4] !! x
    -- Reinhard Zumkeller, Apr 15 2015
  • Mathematica
    b[n_] := n^2; bb = Insert[Table[b[n], {n, 0, 100}]  , 2, 3];
    s[n_] := Table[b[n], {k, 1, 2 n + 1}];
    h[1] = {0, 1, 2, 3}; h[n_] := Join[h[n - 1], s[n]];
    g = h[100]; Take[g, 100]
    r[0] = {0}; r[1] = {1}; r[2] = {2}; r[3] = {3}; r[8] = {4, 3, 1};
    r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, r[n - g[[n]]]]];
    t = Table[r[n], {n, 0, 120}] (* A256913, before concatenation *)
    Flatten[t]  (* A256913 *)
    Table[Last[r[n]], {n, 0, 120}]    (* A256914 *)
    Table[Length[r[n]], {n, 0, 200}]  (* A256915 *)