A256968 Let b(n) = Product_{i=1..n} p_i/(p_i - 1), p_i = i-th prime; a(n) = minimum k such that b(k) >= n.
0, 0, 1, 2, 4, 6, 9, 14, 22, 35, 55, 89, 142, 230, 373, 609, 996, 1637, 2698, 4461, 7398, 12301, 20503, 34253, 57348, 96198, 161659, 272124, 458789, 774616, 1309627, 2216968, 3757384, 6375166, 10828012, 18409028, 31326514, 53354259, 90945529, 155142139
Offset: 0
Keywords
Examples
The sequence b(n) for n >= 0 begins 1, 2, 3, 15/4, 35/8, 77/16, 1001/192, 17017/3072, 323323/55296, 676039/110592, 2800733/442368, 86822723/13271040, 3212440751/477757440, 131710070791/19110297600, 5663533044013/802632499200, ... = A060753/A038110. So a(3) = 2.
Links
- Popular Computing (Calabasas, CA), Problem 182 (Suggested by Victor Meally), Annotated and scanned copy of page 10 of Vol. 5 (No. 53, Aug 1977).
Programs
-
Python
from sympy import prime A256968_list, count, bn, bd = [0,0], 2, 1, 1 for k in range(1,10**4): p = prime(k) bn *= p bd *= p-1 while bn >= count*bd: A256968_list.append(k) count += 1 # Chai Wah Wu, Apr 17 2015; corrected by Max Alekseyev, Jan 26 2025
Extensions
More terms from Chai Wah Wu, Apr 17 2015
a(32)-a(33) from Chai Wah Wu, Apr 19 2015
a(0)-a(1) corrected and a(34)-a(39) copied over from A005579 by Max Alekseyev, Jan 26 2025
Comments