A257007 Number of Zagier-reduced binary quadratic forms of discriminant n^2-4.
0, 0, 1, 3, 4, 7, 7, 12, 8, 20, 13, 18, 18, 31, 20, 31, 24, 39, 26, 53, 20, 66, 36, 36, 50, 76, 39, 62, 56, 92, 42, 72, 42, 120, 68, 72, 70, 136, 46, 126, 76, 112, 100, 96, 68, 146, 105, 125, 66, 226, 77, 168, 96, 138, 126, 160, 96, 228, 100, 142
Offset: 1
Keywords
Examples
For n=5, the a(5) = 4 Zagier-reduced forms of discriminant 21 are x^2 + 5*x*y + y^2, 5*x^2 + 9*x*y + 3*y^2, 3*x^2 + 9*x*y + 5*y^2, and 5*x^2 + 11*x*y + 5*y^2.
References
- D. B. Zagier, Zetafunktionen und quadratische Korper, Springer, 1981.
Links
- P. Kleban and A. Özlük, A Farey fraction spin chain, arXiv:cond-mat/9808182 [cond-mat.stat-mech], 1998; Communications in mathematical physics, 203(3):635-647, 1999. This sequence appears to be the function Phi(n) given in Theorem 4.
- B. R. Smith, Reducing quadratic forms by kneading sequences J. Int. Seq., 17 (2014) 14.11.8.
- B. R. Smith, End-symmetric continued fractions and quadratic congruences, Acta Arith., 167 (2015) 173-187.
- Marc Technau, The Calkin-Wilf tree and a trace condition, Master's Thesis, 2015. The sequence appears to be the function N(n,0) from subsection 1.3.1.
- Marc Technau, Remark on the Farey fraction spin chain, arXiv:2304.08143 [math.NT], 2023. See Theorem 2 p. 4.
Crossrefs
Programs
-
Maple
# Maple code for the formula given by Kleban et al., which is almost certainly the same sequence as this (but until that is proved, the program should not be used to extend this sequence, A264598 or A264599). - N. J. A. Sloane, Nov 19 2015 with(numtheory); # return number of divisors of m less than b dbm:=proc(b,m) local i,t1,t2; t1:=divisors(m); t2:=0; for i from 1 to nops(t1) do if t1[i]add(dbm(b,b*n-b^2-1), b=1..n-1); [seq(f(n),n=1..100)];
-
Mathematica
Table[Length[ Flatten[ Select[ Table[{a, k}, {k, Select[Range[Ceiling[-Sqrt[n]], Floor[Sqrt[n]]], Mod[# - n, 2] == 0 &]}, {a, Select[Divisors[(n - k^2)/4], # > (Sqrt[n] - k)/2 &]}], UnsameQ[#, {}] &], 1]], {n, Map[#^2 - 4 &, Range[3, 60]]}]
-
PARI
d(n, k) = #select(x->(x
Michel Marcus, Apr 18 2023; based on Technau Lemma 3
Formula
With D=n^2-4, a(n) equals the number of pairs (h,k) with |k| < sqrt(D), k^2 congruent to D (mod 4), h > (sqrt(D) - k)/2, h exactly dividing (D-k^2)/4.
From the Kleban et al. reference it appears that a(n) = Sum_{b=1..n-1} dbm(b,n*b-b^2-1), where dbm(b,m) = number of positive divisors of m that are less than b. - N. J. A. Sloane, Nov 19 2015
Comments