cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A257059 Number of length n 1..(n+1) arrays with every leading partial sum divisible by 2 or 3.

Original entry on oeis.org

1, 4, 18, 81, 1024, 7353, 106056, 1249592, 22143847, 282475249, 8589934592, 133642251792, 3531308221901, 71789886480657, 2171807721018968, 45949729863572161, 2218611106740436992, 53241469411989452625
Offset: 1

Views

Author

R. H. Hardin, Apr 15 2015

Keywords

Comments

Diagonal of A257062

Examples

			Some solutions for n=4
..3....4....2....2....3....3....4....4....4....2....2....3....4....2....3....4
..5....5....2....1....1....3....2....5....4....2....1....1....5....4....5....4
..2....5....2....5....2....3....2....3....1....5....5....4....5....2....4....4
..4....1....4....1....4....1....4....2....3....3....4....1....2....1....2....2
		

Crossrefs

A257060 Number of length n 1..(6+1) arrays with every leading partial sum divisible by 2 or 3.

Original entry on oeis.org

4, 18, 81, 364, 1636, 7353, 33048, 148534, 667585, 3000456, 13485528, 60610609, 272413948, 1224362538, 5502888657, 24732693652, 111160914460, 499611933801, 2245502257776, 10092393813166, 45360191702017, 203871056692176
Offset: 1

Views

Author

R. H. Hardin, Apr 15 2015

Keywords

Examples

			Some solutions for n=4:
..4....4....3....4....2....2....3....4....3....2....4....6....6....3....4....6
..4....2....3....2....6....2....7....2....5....4....5....4....4....3....5....2
..6....2....3....2....2....4....5....3....7....3....7....6....5....6....7....4
..2....1....6....4....6....1....3....3....7....1....6....2....7....3....4....4
		

Crossrefs

Column 6 of A257062.

Formula

Empirical: a(n) = 4*a(n-1) + 2*a(n-2) +a(n-3).
Empirical g.f.: x*(4 + 2*x + x^2) / (1 - 4*x - 2*x^2 - x^3). - Colin Barker, Dec 20 2018

A257061 Number of length n 1..(7+1) arrays with every leading partial sum divisible by 2 or 3.

Original entry on oeis.org

5, 27, 141, 738, 3866, 20249, 106056, 555483, 2909419, 15238479, 79813616, 418034724, 2189514005, 11467878868, 60064583029, 314596463387, 1647741976789, 8630273820766, 45202238742834, 236752903766237, 1240025693431636
Offset: 1

Views

Author

R. H. Hardin, Apr 15 2015

Keywords

Examples

			Some solutions for n=4:
..4....6....4....8....3....6....6....6....2....2....2....3....4....4....3....3
..8....8....6....8....5....2....8....3....2....1....7....3....8....2....7....5
..4....1....5....6....8....4....2....1....4....7....6....8....6....6....5....8
..6....1....7....5....2....3....4....4....6....4....1....1....3....3....1....4
		

Crossrefs

Column 7 of A257062.

Formula

Empirical: a(n) = 4*a(n-1) + 5*a(n-2) + 7*a(n-3) + 4*a(n-4).
Empirical g.f.: x*(5 + 7*x + 8*x^2 + 4*x^3) / (1 - 4*x - 5*x^2 - 7*x^3 - 4*x^4). - Colin Barker, Dec 20 2018

A257063 Number of length 1 1..(n+1) arrays with every leading partial sum divisible by 2 or 3.

Original entry on oeis.org

1, 2, 3, 3, 4, 4, 5, 6, 7, 7, 8, 8, 9, 10, 11, 11, 12, 12, 13, 14, 15, 15, 16, 16, 17, 18, 19, 19, 20, 20, 21, 22, 23, 23, 24, 24, 25, 26, 27, 27, 28, 28, 29, 30, 31, 31, 32, 32, 33, 34, 35, 35, 36, 36, 37, 38, 39, 39, 40, 40, 41, 42, 43, 43, 44, 44, 45, 46, 47, 47, 48, 48, 49, 50, 51, 51
Offset: 1

Views

Author

R. H. Hardin, Apr 15 2015

Keywords

Examples

			All solutions for n=4:
..2....4....3
		

Crossrefs

Row 1 of A257062.

Formula

Empirical: a(n) = a(n-1) + a(n-6) - a(n-7).
Empirical for n mod 6 = 0: a(n) = (2/3)*n
Empirical for n mod 6 = 1: a(n) = (2/3)*n + (1/3)
Empirical for n mod 6 = 2: a(n) = (2/3)*n + (2/3)
Empirical for n mod 6 = 3: a(n) = (2/3)*n + 1
Empirical for n mod 6 = 4: a(n) = (2/3)*n + (1/3)
Empirical for n mod 6 = 5: a(n) = (2/3)*n + (2/3).
Empirical g.f.: x*(1 + x + x^2 + x^4) / ((1 - x)^2*(1 + x)*(1 - x + x^2)*(1 + x + x^2)). - Colin Barker, Dec 20 2018

A257064 Number of length 2 1..(n+1) arrays with every leading partial sum divisible by 2 or 3.

Original entry on oeis.org

2, 4, 7, 9, 16, 18, 27, 35, 45, 49, 64, 68, 84, 98, 115, 121, 144, 150, 173, 193, 217, 225, 256, 264, 294, 320, 351, 361, 400, 410, 447, 479, 517, 529, 576, 588, 632, 670, 715, 729, 784, 798, 849, 893, 945, 961, 1024, 1040, 1098, 1148, 1207, 1225, 1296, 1314, 1379
Offset: 1

Views

Author

R. H. Hardin, Apr 15 2015

Keywords

Examples

			All solutions for n=4:
..2....4....4....3....3....2....3....2....4
..1....2....4....1....3....2....5....4....5
		

Crossrefs

Row 2 of A257062.

Formula

Empirical: a(n) = a(n-1) + 2*a(n-6) - 2*a(n-7) - a(n-12) + a(n-13).
Empirical for n mod 6 = 0: a(n) = (4/9)*n^2 + (1/3)*n
Empirical for n mod 6 = 1: a(n) = (4/9)*n^2 + (11/18)*n + (17/18)
Empirical for n mod 6 = 2: a(n) = (4/9)*n^2 + (13/18)*n + (7/9)
Empirical for n mod 6 = 3: a(n) = (4/9)*n^2 + 1*n
Empirical for n mod 6 = 4: a(n) = (4/9)*n^2 + (4/9)*n + (1/9)
Empirical for n mod 6 = 5: a(n) = (4/9)*n^2 + (8/9)*n + (4/9).
Empirical g.f.: x*(2 + 2*x + 3*x^2 + 2*x^3 + 7*x^4 + 2*x^5 + 5*x^6 + 4*x^7 + 4*x^8 + x^10) / ((1 - x)^3*(1 + x)^2*(1 - x + x^2)^2*(1 + x + x^2)^2). - Colin Barker, Dec 20 2018

A257065 Number of length 3 1..(n+1) arrays with every leading partial sum divisible by 2 or 3.

Original entry on oeis.org

2, 6, 18, 27, 64, 81, 141, 200, 293, 343, 512, 578, 776, 954, 1208, 1331, 1728, 1875, 2291, 2652, 3147, 3375, 4096, 4356, 5070, 5678, 6494, 6859, 8000, 8405, 9497, 10416, 11633, 12167, 13824, 14406, 15956, 17250, 18948, 19683, 21952, 22743, 24831, 26564
Offset: 1

Views

Author

R. H. Hardin, Apr 15 2015

Keywords

Examples

			Some solutions for n=4:
..3....2....2....4....2....4....2....3....3....4....2....3....4....3....4....2
..5....1....1....2....4....5....4....3....5....5....4....5....4....1....4....1
..4....5....1....2....3....3....2....3....1....1....4....2....1....5....2....3
		

Crossrefs

Row 3 of A257062.

Formula

Empirical: a(n) = a(n-1) + 3*a(n-6) - 3*a(n-7) - 3*a(n-12) + 3*a(n-13) + a(n-18) - a(n-19).
Empirical for n mod 6 = 0: a(n) = (8/27)*n^3 + (4/9)*n^2 + (1/6)*n
Empirical for n mod 6 = 1: a(n) = (8/27)*n^3 + (2/3)*n^2 + (17/18)*n + (5/54)
Empirical for n mod 6 = 2: a(n) = (8/27)*n^3 + (2/3)*n^2 + (7/9)*n - (16/27)
Empirical for n mod 6 = 3: a(n) = (8/27)*n^3 + (8/9)*n^2 + (1/2)*n + (1/2)
Empirical for n mod 6 = 4: a(n) = (8/27)*n^3 + (4/9)*n^2 + (2/9)*n + (1/27)
Empirical for n mod 6 = 5: a(n) = (8/27)*n^3 + (8/9)*n^2 + (8/9)*n + (8/27).
Empirical g.f.: x*(2 + 4*x + 12*x^2 + 9*x^3 + 37*x^4 + 17*x^5 + 54*x^6 + 47*x^7 + 57*x^8 + 23*x^9 + 58*x^10 + 15*x^11 + 24*x^12 + 13*x^13 + 11*x^14 + x^16) / ((1 - x)^4*(1 + x)^3*(1 - x + x^2)^3*(1 + x + x^2)^3). - Colin Barker, Dec 20 2018

A257066 Number of length 4 1..(n+1) arrays with every leading partial sum divisible by 2 or 3.

Original entry on oeis.org

2, 11, 45, 81, 256, 364, 738, 1149, 1905, 2401, 4096, 4912, 7172, 9297, 12685, 14641, 20736, 23436, 30344, 36455, 45633, 50625, 65536, 71872, 87438, 100767, 120141, 130321, 160000, 172300, 201782, 226521, 261745, 279841, 331776, 352944, 402848
Offset: 1

Views

Author

R. H. Hardin, Apr 15 2015

Keywords

Comments

Row 4 of A257062

Examples

			Some solutions for n=4
..3....4....2....4....3....3....3....4....4....3....2....2....3....3....4....4
..5....5....2....4....3....5....5....5....5....1....1....2....5....1....5....4
..2....1....5....2....2....1....1....5....3....2....3....2....2....2....3....4
..4....2....1....2....2....3....1....2....4....2....2....4....5....3....3....2
		

Crossrefs

Formula

Empirical: a(n) = a(n-1) +4*a(n-6) -4*a(n-7) -6*a(n-12) +6*a(n-13) +4*a(n-18) -4*a(n-19) -a(n-24) +a(n-25)
Empirical for n mod 6 = 0: a(n) = (16/81)*n^4 + (4/9)*n^3 + (1/3)*n^2
Empirical for n mod 6 = 1: a(n) = (16/81)*n^4 + (50/81)*n^3 + (107/108)*n^2 + (44/81)*n - (113/324)
Empirical for n mod 6 = 2: a(n) = (16/81)*n^4 + (46/81)*n^3 + (83/108)*n^2 - (7/162)*n + (25/81)
Empirical for n mod 6 = 3: a(n) = (16/81)*n^4 + (20/27)*n^3 + (7/9)*n^2 + (2/3)*n
Empirical for n mod 6 = 4: a(n) = (16/81)*n^4 + (32/81)*n^3 + (8/27)*n^2 + (8/81)*n + (1/81)
Empirical for n mod 6 = 5: a(n) = (16/81)*n^4 + (64/81)*n^3 + (32/27)*n^2 + (64/81)*n + (16/81)

A257067 Number of length 5 1..(n+1) arrays with every leading partial sum divisible by 2 or 3.

Original entry on oeis.org

3, 20, 113, 243, 1024, 1636, 3866, 6599, 12387, 16807, 32768, 41744, 66291, 90598, 133205, 161051, 248832, 292932, 401910, 501113, 661703, 759375, 1048576, 1185856, 1507979, 1788296, 2222649, 2476099, 3200000, 3532100, 4287258, 4926235, 5889323
Offset: 1

Views

Author

R. H. Hardin, Apr 15 2015

Keywords

Comments

Row 5 of A257062

Examples

			Some solutions for n=4
..3....2....2....3....3....2....4....4....2....3....2....4....4....4....3....2
..5....4....1....3....3....1....5....5....4....3....1....4....5....4....1....1
..4....3....1....3....4....5....3....3....3....2....1....2....3....2....2....1
..2....5....2....1....5....2....4....3....1....1....4....4....2....5....2....4
..1....2....2....4....3....5....4....3....5....5....1....2....1....5....2....2
		

Crossrefs

Formula

Empirical: a(n) = a(n-2) +a(n-3) -a(n-5) +4*a(n-6) -4*a(n-8) -4*a(n-9) +4*a(n-11) -6*a(n-12) +6*a(n-14) +6*a(n-15) -6*a(n-17) +4*a(n-18) -4*a(n-20) -4*a(n-21) +4*a(n-23) -a(n-24) +a(n-26) +a(n-27) -a(n-29)
Empirical for n mod 6 = 0: a(n) = (32/243)*n^5 + (32/81)*n^4 + (4/9)*n^3 + (1/9)*n^2
Empirical for n mod 6 = 1: a(n) = (32/243)*n^5 + (128/243)*n^4 + (487/486)*n^3 + (853/972)*n^2 + (34/243)*n + (313/972)
Empirical for n mod 6 = 2: a(n) = (32/243)*n^5 + (112/243)*n^4 + (355/486)*n^3 + (145/486)*n^2 + (125/486)*n + (209/243)
Empirical for n mod 6 = 3: a(n) = (32/243)*n^5 + (16/27)*n^4 + (8/9)*n^3 + (8/9)*n^2 + (1/3)*n
Empirical for n mod 6 = 4: a(n) = (32/243)*n^5 + (80/243)*n^4 + (80/243)*n^3 + (40/243)*n^2 + (10/243)*n + (1/243)
Empirical for n mod 6 = 5: a(n) = (32/243)*n^5 + (160/243)*n^4 + (320/243)*n^3 + (320/243)*n^2 + (160/243)*n + (32/243)

A257068 Number of length 6 1..(n+1) arrays with every leading partial sum divisible by 2 or 3.

Original entry on oeis.org

4, 33, 284, 729, 4096, 7353, 20249, 37893, 80545, 117649, 262144, 354756, 612724, 882855, 1398784, 1771561, 2985984, 3661425, 5323339, 6888321, 9595049, 11390625, 16777216, 19566096, 26006996, 31736589, 41119756, 47045881, 64000000, 72407025
Offset: 1

Views

Author

R. H. Hardin, Apr 15 2015

Keywords

Comments

Row 6 of A257062

Examples

			Some solutions for n=4
..4....2....4....2....2....3....3....2....3....4....2....2....3....2....3....3
..5....4....2....4....1....3....3....2....3....5....1....1....5....4....3....5
..5....2....4....2....3....3....4....4....3....1....3....5....1....2....2....1
..2....2....5....2....3....3....2....4....1....4....4....2....5....4....4....3
..5....5....1....2....1....3....4....4....2....1....4....4....2....4....3....2
..5....1....4....2....2....3....5....2....3....5....4....4....4....4....1....1
		

Crossrefs

Formula

Empirical: a(n) = a(n-1) +6*a(n-6) -6*a(n-7) -15*a(n-12) +15*a(n-13) +20*a(n-18) -20*a(n-19) -15*a(n-24) +15*a(n-25) +6*a(n-30) -6*a(n-31) -a(n-36) +a(n-37)
Empirical for n mod 6 = 0: a(n) = (64/729)*n^6 + (80/243)*n^5 + (40/81)*n^4 + (7/27)*n^3 + (1/36)*n^2
Empirical for n mod 6 = 1: a(n) = (64/729)*n^6 + (104/243)*n^5 + (26/27)*n^4 + (6515/5832)*n^3 + (1181/1944)*n^2 + (161/648)*n + (3197/5832)
Empirical for n mod 6 = 2: a(n) = (64/729)*n^6 + (88/243)*n^5 + (2/3)*n^4 + (2917/5832)*n^3 + (337/972)*n^2 + (50/81)*n - (1091/729)
Empirical for n mod 6 = 3: a(n) = (64/729)*n^6 + (112/243)*n^5 + (8/9)*n^4 + (29/27)*n^3 + (25/36)*n^2 + (1/6)*n + (1/4)
Empirical for n mod 6 = 4: a(n) = (64/729)*n^6 + (64/243)*n^5 + (80/243)*n^4 + (160/729)*n^3 + (20/243)*n^2 + (4/243)*n + (1/729)
Empirical for n mod 6 = 5: a(n) = (64/729)*n^6 + (128/243)*n^5 + (320/243)*n^4 + (1280/729)*n^3 + (320/243)*n^2 + (128/243)*n + (64/729)

A257069 Number of length 7 1..(n+1) arrays with every leading partial sum divisible by 2 or 3.

Original entry on oeis.org

4, 59, 713, 2187, 16384, 33048, 106056, 217603, 523733, 823543, 2097152, 3014848, 5663370, 8603223, 14688611, 19487171, 35831808, 45765000, 70508164, 94687187, 139133363, 170859375, 268435456, 322831872, 448523376, 563223955, 760729349
Offset: 1

Views

Author

R. H. Hardin, Apr 15 2015

Keywords

Comments

Row 7 of A257062

Examples

			Some solutions for n=4
..4....2....2....2....4....3....3....2....3....3....2....4....3....4....2....2
..2....2....1....2....2....5....3....1....3....5....4....4....3....4....4....4
..4....2....3....4....3....2....3....1....3....4....2....1....4....1....2....4
..2....3....3....2....3....5....1....5....5....3....2....1....2....3....4....2
..3....1....1....5....4....1....5....5....1....3....5....2....3....3....3....2
..1....2....4....3....4....2....3....2....1....3....3....4....3....3....1....4
..5....4....2....2....2....2....4....2....4....3....4....5....2....2....2....3
		

Crossrefs

Formula

Empirical: a(n) = a(n-1) +7*a(n-6) -7*a(n-7) -21*a(n-12) +21*a(n-13) +35*a(n-18) -35*a(n-19) -35*a(n-24) +35*a(n-25) +21*a(n-30) -21*a(n-31) -7*a(n-36) +7*a(n-37) +a(n-42) -a(n-43)
Empirical for n mod 6 = 0: a(n) = (128/2187)*n^7 + (64/243)*n^6 + (40/81)*n^5 + (32/81)*n^4 + (1/9)*n^3
Empirical for n mod 6 = 1: a(n) = (128/2187)*n^7 + (736/2187)*n^6 + (644/729)*n^5 + (2765/2187)*n^4 + (17999/17496)*n^3 + (2885/5832)*n^2 + (9121/17496)*n - (10279/17496)
Empirical for n mod 6 = 2: a(n) = (128/2187)*n^7 + (608/2187)*n^6 + (428/729)*n^5 + (1321/2187)*n^4 + (4141/8748)*n^3 + (775/1458)*n^2 - (1534/2187)*n + (1649/2187)
Empirical for n mod 6 = 3: a(n) = (128/2187)*n^7 + (256/729)*n^6 + (200/243)*n^5 + (32/27)*n^4 + (28/27)*n^3 + (17/36)*n^2 + (1/3)*n - (1/4)
Empirical for n mod 6 = 4: a(n) = (128/2187)*n^7 + (448/2187)*n^6 + (224/729)*n^5 + (560/2187)*n^4 + (280/2187)*n^3 + (28/729)*n^2 + (14/2187)*n + (1/2187)
Empirical for n mod 6 = 5: a(n) = (128/2187)*n^7 + (896/2187)*n^6 + (896/729)*n^5 + (4480/2187)*n^4 + (4480/2187)*n^3 + (896/729)*n^2 + (896/2187)*n + (128/2187)
Showing 1-10 of 10 results.