cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257067 Number of length 5 1..(n+1) arrays with every leading partial sum divisible by 2 or 3.

Original entry on oeis.org

3, 20, 113, 243, 1024, 1636, 3866, 6599, 12387, 16807, 32768, 41744, 66291, 90598, 133205, 161051, 248832, 292932, 401910, 501113, 661703, 759375, 1048576, 1185856, 1507979, 1788296, 2222649, 2476099, 3200000, 3532100, 4287258, 4926235, 5889323
Offset: 1

Views

Author

R. H. Hardin, Apr 15 2015

Keywords

Comments

Row 5 of A257062

Examples

			Some solutions for n=4
..3....2....2....3....3....2....4....4....2....3....2....4....4....4....3....2
..5....4....1....3....3....1....5....5....4....3....1....4....5....4....1....1
..4....3....1....3....4....5....3....3....3....2....1....2....3....2....2....1
..2....5....2....1....5....2....4....3....1....1....4....4....2....5....2....4
..1....2....2....4....3....5....4....3....5....5....1....2....1....5....2....2
		

Crossrefs

Formula

Empirical: a(n) = a(n-2) +a(n-3) -a(n-5) +4*a(n-6) -4*a(n-8) -4*a(n-9) +4*a(n-11) -6*a(n-12) +6*a(n-14) +6*a(n-15) -6*a(n-17) +4*a(n-18) -4*a(n-20) -4*a(n-21) +4*a(n-23) -a(n-24) +a(n-26) +a(n-27) -a(n-29)
Empirical for n mod 6 = 0: a(n) = (32/243)*n^5 + (32/81)*n^4 + (4/9)*n^3 + (1/9)*n^2
Empirical for n mod 6 = 1: a(n) = (32/243)*n^5 + (128/243)*n^4 + (487/486)*n^3 + (853/972)*n^2 + (34/243)*n + (313/972)
Empirical for n mod 6 = 2: a(n) = (32/243)*n^5 + (112/243)*n^4 + (355/486)*n^3 + (145/486)*n^2 + (125/486)*n + (209/243)
Empirical for n mod 6 = 3: a(n) = (32/243)*n^5 + (16/27)*n^4 + (8/9)*n^3 + (8/9)*n^2 + (1/3)*n
Empirical for n mod 6 = 4: a(n) = (32/243)*n^5 + (80/243)*n^4 + (80/243)*n^3 + (40/243)*n^2 + (10/243)*n + (1/243)
Empirical for n mod 6 = 5: a(n) = (32/243)*n^5 + (160/243)*n^4 + (320/243)*n^3 + (320/243)*n^2 + (160/243)*n + (32/243)