cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A127194 A 10th-order Fibonacci sequence.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 19, 37, 73, 145, 289, 577, 1153, 2305, 4609, 9217, 18424, 36829, 73621, 147169, 294193, 588097, 1175617, 2350081, 4697857, 9391105, 18772993, 37527562, 75018295, 149962969, 299778769, 599263345, 1197938593
Offset: 1

Views

Author

Luis A Restrepo (luisiii(AT)hotmail.com), Jan 11 2007

Keywords

Comments

10th-order Fibonacci constant = 1.999018633...

Crossrefs

Cf. Fibonacci numbers A000045, tribonacci numbers A000213, tetranacci numbers A000288, pentanacci numbers A000322, hexanacci numbers A000383, heptanacci numbers A060455, octanacci numbers A123526, 9th-order Fibonacci sequence A127193.

Programs

  • Mathematica
    With[{t=Table[1,{10}]},LinearRecurrence[t,t,40]] (* Harvey P. Dale, Nov 12 2013 *)
  • PARI
    a(n)=([0,1,0,0,0,0,0,0,0,0; 0,0,1,0,0,0,0,0,0,0; 0,0,0,1,0,0,0,0,0,0; 0,0,0,0,1,0,0,0,0,0; 0,0,0,0,0,1,0,0,0,0; 0,0,0,0,0,0,1,0,0,0; 0,0,0,0,0,0,0,1,0,0; 0,0,0,0,0,0,0,0,1,0; 0,0,0,0,0,0,0,0,0,1; 1,1,1,1,1,1,1,1,1,1]^(n-1)*[1;1;1;1;1;1;1;1;1;1])[1,1] \\ Charles R Greathouse IV, Jun 15 2015

Formula

O.g.f.: x*(-1+x^2+2*x^3+3*x^4+4*x^5+5*x^6+6*x^7+7*x^8+8*x^9) / (-1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10). - R. J. Mathar, Nov 23 2007

A257074 Primes in the 10th-order Fibonacci numbers A127194.

Original entry on oeis.org

19, 37, 73, 577, 1153, 588097, 1175617, 2350081, 18772993, 4877942342401, 40459828019985257473, 161680527238968327169, 323202386497090728961, 10317126837306838775329, 171065716870341976441855042753
Offset: 1

Views

Author

Robert Price, Apr 15 2015

Keywords

Comments

a(16) is too large to display here. It has 53 digits and is the 184th term in A127194.

Crossrefs

Programs

  • Mathematica
    a={1,1,1,1,1,1,1,1,1,1}; step=10; offset=1; lst={}; For[n=step+offset,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,sum]]; a=RotateLeft[a]; a[[step]]=sum]; lst
    Select[With[{t=Table[1,{10}]},LinearRecurrence[t,t,400]],PrimeQ] (* Harvey P. Dale, Jan 17 2024 *)
Showing 1-2 of 2 results.